answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Vaselesa [24]
2 years ago
14

The temperature of a system drops by 30°F during a cooling process. Express this drop in temperature in K, R, and °C.

Physics
1 answer:
babunello [35]2 years ago
8 0

Answer:

272.05 K; 489.69 °R; -1.11 °C

Explanation:

Fahrenheit can be converted to degrees Celsius using the following formula:

°C = 5/9 x (°F - 32) = -1.11 °C

The temperature in Kelvin is calculated from the temperature in degrees Celsius as follows:

K = °C + 273.15 = 272.05 K

The temperature on the Rankine scale is calculated from Kelvin as follows:

°R = 1.8K = 1.8(272.05) = 489.69 °R

You might be interested in
A 15.0-gram lead ball at 25.0°C was heated with 40.5 joules of heat. Given the specific heat of lead is 0.128 J/g∙°C, what is th
mr Goodwill [35]

Answer:

T=4985.5^{\circ}K

Explanation:

The equation that relates heat Q with the temperature change T-T_0 of a substance of mass <em>m </em>and specific heat <em>c </em>is Q=mc(T-T_0).

We want to calculate the final temperature <em>T, </em>so we have:

T=\frac{Q}{mc}+T_0

Which for our values means (in this case we do not need to convert the mass to Kg since <em>c</em> is given in g also and they cancel out, but we add 273^{\circ} to our temperature in ^{\circ}C to have it in ^{\circ}K as it must be):

T=\frac{Q}{mc}+T_0=\frac{40.5J}{(15g)(0.128J/g^{\circ}C)}+(298^{\circ}K)=4985.5^{\circ}K

3 0
2 years ago
A particle has a velocity of v→(t)=5.0ti^+t2j^−2.0t3k^m/s.
Makovka662 [10]

Answer:

a)a=5 i+2t j - 6\ t^2k

b)a=\dfrac{1}{24.83}(5i+4j-24k)\ m/s^2

Explanation:

Given that

v(t) = 5 t i + t² j - 2 t³ k

We know that acceleration a is given as

a=\dfrac{dv}{dt}

\dfrac{dv}{dt}=5 i+2t j - 6\ t^2k

a=5 i+2t j - 6\ t^2k

Therefore the acceleration function a will be

a=5 i+2t j - 6\ t^2k

The acceleration at t = 2 s

a= 5 i + 2 x 2 j - 6 x 2² k  m/s²

a=5 i + 4 j -24 k m/s²

The magnitude of the acceleration will be

a=\sqrt{5^2+4^2+24^2}\ m/s^2

a= 24.83 m/s²

The direction of the acceleration a is given as

a=\dfrac{1}{24.83}(5i+4j-24k)\ m/s^2

a)a=5 i+2t j - 6\ t^2k

b)a=\dfrac{1}{24.83}(5i+4j-24k)\ m/s^2

5 0
2 years ago
Identify the method of thermal energy transfer at work in hot air balloons. Explain how thermal energy is transferred in this sc
yan [13]
Thermal energy in the form of fire is generated by the combustion of fuel. Due to the tendency of hot air to rise upward, the heat generated rises to fill the space of the balloon. One this space is full of trapped hot air, the heat's tendency to rise causes the hot air balloon to be lifted into the air. 
8 0
2 years ago
Read 2 more answers
American Football Field Uses A Field That Is 100.0 Yd Long, Whereas A Soccer Field Is 100.0m Long. Which Field Is Longer And By
postnew [5]
Note that
1 yd = 0.9144 m

Therefore,
The length of an American Football field is
(100 yds)*(09144 m/yd) = 91.44 m

Because the soccer field is 110 m long, its length exceeds the American Football Field by
100 - 91.44 = 8.56 m
or
(8.56/.9144) =  9.36 yd
This difference is equivalent to (8.56/91.44)*100 = 9.4%

Answer:
The Soccer Field is longer by
8.56 m, or
9.36 yd, or
9.4%
4 0
2 years ago
A 50.-kilogram rock rolls off the edge of a cliff. if it is traveling at a speed of 24.2 m/s when it hits the ground, what is th
ElenaW [278]

The correct answer to the question is : 29.88 m.

EXPLANATION :

As per the question, the mass of the rock m = 50 Kg.

The rock is rolling off the edges of the cliff.

The final velocity of the rock when it hits the ground v = 24 .2 m/s.

Let the height of the cliff is h.

The potential energy gained by the rock at the top of the cliff = mgh.

Here, g is known as acceleration due to gravity, and g = 9.8\ m/s^2

When the rock rolls off the edge of the cliff, the potential energy is converted into kinetic energy.

When the rock hits the ground, whole of its potential energy is converted into its kinetic energy.

The kinetic energy of the rock when it touches the ground is given as -

                Kinetic energy K.E = \frac{1}{2}mv^2.

From above we know that -

   Kinetic energy at the bottom of the cliff = potential energy at a height h

                 \frac{1}{2}mv^2=\ mgh

                ⇒ v^2=\ 2gh

                ⇒ h=\ \frac{v^2}{2g}

                ⇒ h=\ \frac{(24.2)^2}{2\times 9.8}

                ⇒ h=\ 29.88\ m

Hence, the height of the cliff is 29.88 m

             


5 0
2 years ago
Other questions:
  • The image shows an example of white light entering a prism and coming out as colors of the rainbow. How does a prism a produce t
    11·2 answers
  • Which best describes what forms in nuclear fission?A. two smaller, more stable nucleiB. two larger, less stable nucleiC. one sma
    7·2 answers
  • Physics students use a spring scale to measure the weight of a piece of lead. The experiment was performed two times: once in th
    15·1 answer
  • Joe pushes down the length of the handle of a 10.9 kg lawn spreader. The handle makes an angle of 45.3 ◦ with the horizontal. Jo
    9·1 answer
  • Enrico says that positive charge is created when you rub a glass rod with silk, and that negative charge is simply the absence o
    5·1 answer
  • A ball is fired at an angle of 45 degrees, the angle that yields the maximum range in the absence of air resistance. What is the
    6·2 answers
  • The dwarf planet praamzius is estimated to have a diameter of about 300km and orbits the sun at a distance of 6.4E12m . What is
    8·1 answer
  • An extremely long thin wire carries a uniform linear charge density of 358 nC/m. Find the potential difference between points 5.
    6·1 answer
  • At time t=0 , a cart is at x=10 m and has a velocity of 3 m/s in the −x -direction. The cart has a constant acceleration in the
    9·1 answer
  • Packages having a mass of 6 kgkg slide down a smooth chute and land horizontally with a speed of 3 m/sm/s on the surface of a co
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!