answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ale4655 [162]
2 years ago
10

Suppose the coefficient of static friction between the road and the tires on a car is 0.683 and the car has no negative lift. Wh

at speed will put the car on the verge of sliding as it rounds a level curve of 26.9 m radius?
Physics
1 answer:
Alchen [17]2 years ago
4 0

Answer:

v=13.4 m/s

Explanation:

The centripetal acceleration the car experiments is due to friction, so what we need is to write our equation using the maximum static friction, which is the case on the verge of sliding:

ma_{cp}=f=\mu_s N

Which means (since we are in a horizontal surface):

m\frac{v^2}{R}=\mu_s mg

So the maximum speed before sliding is:

v=\sqrt{\mu_s Rg}

Which for our values is:

v=\sqrt{(0.683)(26.9m)(9.81m/s^2)}=13.4m/s

You might be interested in
A 7.5 nC point charge and a - 2.9 nC point charge are 3.2 cm apart. What is the electric field strength at the midpoint between
Oduvanchick [21]

Answer:

Net electric field, E_{net}=91406.24\ N/C

Explanation:

Given that,

Charge 1, q_1=7.5\ nC=7.5\times 10^{-9}\ C

Charge 2, q_2=-2.9\ nC=-2.9\times 10^{-9}\ C

distance, d = 3.2 cm = 0.032 m

Electric field due to charge 1 is given by :

E_1=\dfrac{kq_1}{r^2}

E_1=\dfrac{9\times 10^9\times 7.5\times 10^{-9}}{(0.032)^2}

E_1=65917.96\ N/C

Electric field due to charge 2 is given by :

E_2=\dfrac{kq_2}{r^2}

E_2=\dfrac{9\times 10^9\times 2.9\times 10^{-9}}{(0.032)^2}

E_2=25488.28\ N/C

The point charges have opposite charge. So, the net electric field is given by the sum of electric field due to both charges as :

E_{net}=E_1+E_2

E_{net}=65917.96+25488.28

E_{net}=91406.24\ N/C

So, the electric field strength at the midpoint between the two charges is 91406.24 N/C. Hence, this is the required solution.

3 0
2 years ago
A man swims at a speed of 0.4 m/s. How long will it take him to cross a pool of length 50 m?
konstantin123 [22]
Distance = speed * time, then time = distance / speed.

time = 50 / 0.4 = 125 s
7 0
2 years ago
You have a 2m long wire which you will make into a thin coil with N loops to generate a magnetic field of 3mT when the current i
Anni [7]

Answer:

<em>radius of the loop =  7.9 mm</em>

<em>number of turns N ≅ 399 turns</em>

Explanation:

length of wire L= 2 m

field strength B = 3 mT = 0.003 T

current I = 12 A

recall that field strength B = μnI

where n is the turn per unit length

vacuum permeability μ  = 4\pi *10^{-7}  T-m/A = 1.256 x 10^-6 T-m/A

imputing values, we have

0.003 = 1.256 x 10^−6 x n x 12

0.003 = 1.507 x 10^-5 x n

n = 199.07 turns per unit length

for a length of 2 m,

number of loop N = 2 x 199.07 = 398.14 ≅ <em>399 turns</em>

since  there are approximately 399 turns formed by the 2 m length of wire, it means that each loop is formed by 2/399 = 0.005 m of the wire.

this length is also equal to the circumference of each loop

the circumference of each loop = 2\pi r

0.005 = 2 x 3.142 x r

r = 0.005/6.284 = 7.9*10^{-4} m = 0.0079 m =<em> 7.9 mm</em>

8 0
2 years ago
A steel ball bearing with a radius of 1.5 cm forms an image of an object that has been placed 1.1 cm away from the bearing’s sur
Nonamiya [84]

Answer:

Check the explanation

Explanation:

given

R = 1.5 cm

object distance, u = 1.1 cm

focal length of the ball, f = -R/2

= -1.5/2

= -0.75 cm

let v is the image distance

use, 1/u + 1/v = 1/f

1/v = 1/f - 1/u

1/v = 1/(-0.75) - 1/(1.1)

v = -0.446 cm <<<<<---------------Answer

magnification, m = -v/u

= -(-0.446)/1.1

= 0.405 <<<<<<<<<---------------Answer

The image is virtual

The image is upright

given

R = 1.5 cm

object distance, u = 1.1 cm

focal length of the ball, f = -R/2

= -1.5/2

= -0.75 cm

let v is the image distance

use, 1/u + 1/v = 1/f

1/v = 1/f - 1/u

1/v = 1/(-0.75) - 1/(1.1)

v = -0.446 cm <<<<<---------------Answer

magnification, m = -v/u

= -(-0.446)/1.1

= 0.405 <<<<<<<<<---------------Answer

Kindly check the diagram in the attached image below.

5 0
2 years ago
A 25.0 g marble sliding to the right at 20.0 cm/s overtakes and collides elastically with a 10.0 g marble moving in the same dir
ikadub [295]
In collision that are categorized as elastic, the total kinetic energy of the system is preserved such that,

   KE1  = KE2

The kinetic energy of the system before the collision is solved below.

  KE1 = (0.5)(25)(20)² + (0.5)(10g)(15)²
  KE1 = 6125 g cm²/s²

This value should also be equal to KE2, which can be calculated using the conditions after the collision.

KE2 = 6125 g cm²/s² = (0.5)(10)(22.1)² + (0.5)(25)(x²)

The value of x from the equation is 17.16 cm/s.

Hence, the answer is 17.16 cm/s. 
6 0
2 years ago
Other questions:
  • Starting from equilibrium at point 0, what point on the pv diagram will describe the ideal gas after the following process? lock
    5·2 answers
  • A 0.5-kg ball accelerated at 50 m/s2<br> .<br><br> What force was applied?
    7·1 answer
  • Which best explains why infrared waves are ineffective for treating cancer ?
    14·2 answers
  • -A coconut falls out of a tree 12.0 m above the ground and hits a bystander 3.00 m tall on the top of the head. It bounces back
    11·1 answer
  • Fill in the terms that accurately complete the statements. The nucleus contains positively charged particles called and neutral
    11·2 answers
  • The flight of a kicked football follows the quadratic function f(x)=−0.02x2+2.2x+2, where f(x) is the vertical distance in feet
    14·1 answer
  • Consider a simple ideal Rankine cycle with fixed turbine inlet conditions. What is the effect of lowering the condenser pressure
    8·1 answer
  • Think about it: suppose a meteorite collided head-on with mars and becomes buried under mars's surface. what would be the elasti
    6·1 answer
  • A fish is 80 cm below the surface of a pond. What is the apparent depth (in cm) when viewed from a position almost directly abov
    6·1 answer
  • A pendulum makes 50 complete swings in 2 min 40 s.<br> What is the time period for 1 complete swing?
    12·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!