Answer:
<em>4.61 N</em>
<em></em>
Explanation:
masa = 0.5 kg
ángulo de inclinación = 20°
Peso normal de la masa = mg
donde m = masa
g = aceleración debido a la gravedad = 9.81 m/s^2
Peso normal = 0.5 x 9.81 = 4.905 N
Si la masa se mantiene en su lugar mediante una cuerda paralela al plano, y no hay fricción en la masa, entonces
La fuerza sobre la cuerda = peso normal x cos ∅
donde ∅ = 20 °
La fuerza sobre la cuerda = 4.905 x cos 20°
==><em> 4.61 N</em>
The most common measuring device to be used in measuring enthalpy changes is the thermometer.
1 isla thanks for your help and I hope you are feeling 44356
Answer:
False
Explanation:
This is because according to newtons second law which says the acceleration of an object as produced by a net force is directly proportional to the magnitude of the net force, in the same direction as the net force, and inversely proportional to the mass of the object. So take for example a net a net force in opposite direction will cause an object to slow down.
velocity vector here is not the same as acceleration vector
Answer:
(A) = 3.57 m
Explanation:
from the question we are given the following:
diameter (d) = 3.2 m
mass (m) == 42 kg
angular speed (ω) = 4.27 rad/s
from the conservation of energy
mgh = 0.5 mv^{2} + 0.5Iω^{2} ...equation 1
where
Inertia (I) = 0.5mr^{2}
ω = \frac{v}{r}
equation 1 now becomes
mgh = 0.5 mv^{2} + 0.5(0.5mr^{2})(\frac{v}{r})^{2}
gh = 0.5 v^{2} + 0.5(0.5)(v)^{2}
4gh = 2v^{2} + v^{2}
h = 3v^{2} ÷ 4 g .... equation 2
from ω = \frac{v}{r}
v = ωr = 4.27 x (3.2 ÷ 2)
v = 6.8 m/s
now substituting the value of v into equation 2
h = 3v^{2} ÷ 4 g
h = 3 x (6.8)^{2} ÷ (4 x 9.8)
h = 3.57 m