For a simple harmonic motion, the position of the mass at any time t is given by

where
A is the amplitude of the motion (in this problem, A=17.5 cm)

is the angular frequency of the oscillator
t is the time
The angular frequency of the motion in the problem is given by

And so, we can find the position x of the mass (with respect to the equilibrium position) at time t=2.50 s:
Given that,
Current = 4 A
Sides of triangle = 50.0 cm, 120 cm and 130 cm
Magnetic field = 75.0 mT
Distance = 130 cm
We need to calculate the angle α
Using cosine law




We need to calculate the angle β
Using cosine law




We need to calculate the force on 130 cm side
Using formula of force



We need to calculate the force on 120 cm side
Using formula of force


The direction of force is out of page.
We need to calculate the force on 50 cm side
Using formula of force


The direction of force is into page.
Hence, The magnitude of the magnetic force on each of the three sides of the loop are 0 N, 0.1385 N and 0.1385 N.
r = radius of the circle of the ride = 3.00 meters
v = linear speed of the person during the ride = 17.0 m/s
m = mass of the person in angular motion in the ride
L = angular momentum of the person in the ride = 3570 kg m²/s
Angular momentum is given as
L = m v r
inserting the values
3570 kg m²/s = m (17 m/s) (3.00 m)
m = 3570 kg m²/s/(51 m²/s)
m = 7 kg
hence the mass comes out to be 7 kg
The velocity of the aircraft relative to the ground is 240 km/h North
Explanation:
We can solve this problem by using vector addition. In fact, the velocity of the aircraft relative to the ground is the (vector) sum between the velocity of the aircraft relative to the air and the velocity of the air relative to the ground.
Mathematically:

where
v' is the velocity of the aircraft relative to the ground
v is the velocity of the aircraft relative to the air
is the velocity of the air relative to the ground.
Taking north as positive direction, we have:
v = +320 km/h
(since the air is moving from North)
Therefore, we find
(north)
Learn more about vector addition:
brainly.com/question/4945130
brainly.com/question/5892298
#LearnwithBrainly