Answer:
5.22 x 10^5 V
Explanation:
guessed on castle learning and got it right
Answer:
D. "The net force is zero, so the acceleration is zero"
Explanation:
edge 2020
Answer with Explanation:
We are given that
Radius of solid core wire=r=2.28 mm=

Radius of each strand of thin wire=r'=0.456 mm=
Current density of each wire=
a.Area =
Where 
Using the formula
Cross section area of copper wire has solid core =
Current density =
Using the formula


Total number of strands=19
Area of strand wire=




b.Resistivity of copper wire=
Length of each wire =6.25 m
Resistance, R=
Using the formula
Resistance of solid core wire=
Resistance of strand wire=
Answer:
During convection, hot material expands & rises then moves to the side and cools & sinks. this circular pattern is called a convection current.
Explanation:
Convection is one of the three methods of transfer of heat. It occurs only in fluids (liquids or gases).
Convection occurs when there is a source of heat that heats a fluid, such as in a boiling pot of water. The water which is on the bottom of the pot becomes warmer before than the water at the top (because it is closer to the flame), and so it becomes less dense: for this reason, it expands and it becomes rising. On the contrary, the water on top is colder, so it is more dense and starts sinking, replacing the warmer water. As the new part of water gets warmer, it starts rising, and so the process is continuously repeated. This circular current is called convection current.
Hot combustion gases are accelerated in a 92% efficient
adiabatic nozzle from low velocity to a specified velocity. The exit velocity
and the exit temp are to be determined.
Given:
T1 = 1020 K à
h1 = 1068.89 kJ/kg, Pr1 = 123.4
P1 = 260 kPa
T1 = 747 degrees Celsius
V1 = 80 m/s ->nN = 92% -> P2
= 85 kPa
Solution:
From the isentropic relation,
Pr2<span> = (P2 / P1)PR1 = (85
kPa / 260 kPa) (123.4) = 40.34 = h2s = 783.92 kJ/kg</span>
There is only one inlet and one exit, and thus, m1 =
m2 = m3. We take the nozzle as the system, which is a
control volume since mass crosses the boundary.
h2a = 1068.89 kJ/kg – (((728.2 m/s)2 –
(80 m/s)2) / 2) (1 kJ/kg / 1000 m2/s2) =
806.95 kJ/kg\
From the air table, we read T2a = 786.3 K