To solve this problem it is necessary to apply the concepts related to Young's Module and its respective mathematical and modular definitions. In other words, Young's Module can be expressed as

Where,
F = Force/Weight
A = Area
= Compression
= Original Length
According to the values given we have to




Replacing this values at our previous equation we have,



Therefore the Weight of the object is 3.82kN
P = mv
p = 3.5 × 5
p = 17.5 kg .m/s
Hope this helps!
When the relationship between two variables are said to be proportional, it means that one variable is a constant multiple of the other variable. They are related by a constant of proportionality, usually denoted as k.
In this problem, the dependent variable is the distance in kilometers. Your mileage is limited with the amount of fuel you have. Thus, the independent variable is the liters of fuel. When these two are proportional, it could be expressed as
distance = k * liters of fuel, such that
distance/liters of fuel = k
By variation,
distance,1/liters of fuel,1 = distance,2/liters of fuel,2, where 1 denotes situation 1 and 2 denotes situation 2. Therefore,
999999 km /<span>999 liters = x km /</span><span>121212 liters, where x is the unknown distance. We can now therefore find the value of x.
x = (999999*121212)/999
x = 121333212 kilometers</span>
Answer:
7.9 
Explanation:
Take the fact that mass is inversely proportional to accelertation:
m ∝ a
Therefore m = a, but because we are finding the change in acceleration, we would set our problem up to look more like this:

Using algebra, we can rearrange our equation to find the final acceleration,
:

Before plugging everything in, since you are being asked to find acceleration, you will want to convert 0.85g to m/s^2. To do this, multiply by g, which is equal to 9.8 m/s^2:
0.85g * 9.8
= 8.33
Plug everything in:
7.9
= 
(1590kg the initial weight plus the weight of the added passenger)
Given required solution
M=10kg W=? W=Fd
v=5.0m/s F=mg
t=2.40s =10*10=100N
S=VT
=5m/s*2.4s
=12m
so W=12*100
W=1200J