Answer:
497.00977 N
3742514.97005
Explanation:
= Density of water = 1000 kg/m³
C = Drag coefficient = 0.09
v = Velocity of dolphin = 7.5 m/s
r = Radius of bottlenose dolphin = 0.5/2 = 0.25 m
A = Area
Drag force

The drag force on the dolphin's nose is 497.00977 N
at 20°C
= Dynamic viscosity = 
Reynold's Number

The Reynolds number is 3742514.97005
Answer:

Since we have identical diodes we can use the equation:

And replacing we have:
Since we know that 1 mA is drawn away from the output then the real value for I would be

And for this case the value for
would be:

And the output votage on this case would be:

And the net change in the output voltage would be:

Explanation:
For this case we have the figure attached illustrating the problem
We know that the equation for the current in a diode id given by:
![I_D = I_s [e^{\frac{V_D}{V_T}} -1] \approx I_S e^{\frac{V_D}{V_T}}](https://tex.z-dn.net/?f=%20I_D%20%3D%20I_s%20%5Be%5E%7B%5Cfrac%7BV_D%7D%7BV_T%7D%7D%20-1%5D%20%5Capprox%20I_S%20e%5E%7B%5Cfrac%7BV_D%7D%7BV_T%7D%7D)
For this case the voltage across the 3 diode in series needs to be 2 V, and we can find the voltage on each diode
and each voltage is the same v for each diode, so then:

Since we have identical diodes we can use the equation:

And replacing we have:

Since we know that 1 mA is drawn away from the output then the real value for I would be

And for this case the value for
would be:

And the output votage on this case would be:

And the net change in the output voltage would be:

<span>AS T1,T2,T3 are the tensions in the ropes,assuming that there are Three blocks of mass 3m, 2m, and m.T3 is the string between 3m and 2m,T2 is the string between 2m and m ,T1 is the string attached to m thus T1 pulls the whole set of blocks along, so it must be the largest. T2 pulls the last
two masses, but T3 only pulls the last mass, so T3 < T2 < T1.</span>
The objects will remain at rest if net force acting on it is zero if their magnitude is same and they are acting in opposite direction then according to Newton's 2nd law the net force acting on the system is zero. Since the net force on the system is zero, the object will remain at rest.
Answer:
See explanation.
Explanation:
If each runner was holding the pole, the runner in the water side of the pole would probably be behind the other runner. Since running in knee deep is hard and makes you slower, the pole would be slanted.