Answer:
The terminal speed of this object is 12.6 m/s
Explanation:
It is given that,
Mass of the object, m = 80 kg
The magnitude of drag force is,

The terminal speed of an object is attained when the gravitational force is balanced by the gravitational force.



On solving the above quadratic equation, we get two values of v as :
v = 12.58 m/s
v = -15.58 m/s (not possible)
So, the terminal speed of this object is 12.6 m/s. Hence, this is the required solution.
There are other forces at work here nevertheless we will imagine
it is just a conservation of momentum exercise. Also the given mass of the
astronaut is light astronaut.
The solution for this problem is using the formula: m1V1=m2V2 but
we need to get V1:
V1= (m2/m1) V2
V1= (10/63) 12 = 1.9 m/s will be the final speed of the astronaut after
throwing the tank.
Answer:
2.286 ohm
Explanation:
R1 = 16 ohm
R2 = 8 ohm
R3 = 4 ohm
They all are connected in parallel combination
Let the equivalent resistance is R.
1/R = 1/R1 + 1/R2 + 1/R3
1/R = 1/16 + 1/8 + 1/4
1/R = (1 + 2 + 4) / 16
1/R = 7 / 16
R = 16/7 = 2.286 ohm
We have that The ratio U1/U2 of their potential energies due to their interactions with Q is
From the question we are told that
Question 1
Charge q1 is distance r from a positive point charge Q.
Question 2
Charge q2=q1/3 is distance 2r from Q.
Charge q1 is distance s from the negative plate of a parallel-plate capacitor.
Charge q2=q1/3 is distance 2s from the negative plate.
Generally the equation for the potential energy is mathematically given as

Therefore
The Equations of U1 and U2 is
For U1

For U2

Since
U is a function of q and q2=q1/3
Therefore

For Question 2
For U1

Therefore

For more information on this visit
brainly.com/question/23379286?referrer=searchResults
Charges build up when you have dry air and friction ,the heat to clothes which dry it out and causes friction.