answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
vodomira [7]
2 years ago
5

(b) The refractive index of the glass of the prism is 1.49. The ray EF is refracted at F. Use

Physics
1 answer:
eduard2 years ago
3 0

see in link below. ok bye my friend

You might be interested in
If an irregularly shaped object (such as a wrench) is dropped from rest in a classroom and feels no air resistance, it will:
Maslowich

Answer:

D) accelerate but will not spin.

Explanation:

On the off chance that there is no air resistance the object will accelerate yet won't turn, this is on the grounds that without air resistance same force is applied on each bit of the object. Force on each segment is coordinated descending i.e parallel force. So there is no force to deliver spin movement in it.  

It will accelerate because of gravity

7 0
2 years ago
A trebuchet was a hurling machine built to attack the walls of a castle under siege. A large stone could be hurled against a wal
Studentka2010 [4]

(a) 18.9 m/s

The motion of the stone consists of two independent motions:

- A horizontal motion at constant speed

- A vertical motion with constant acceleration (g=9.8 m/s^2) downward

We can calculate the components of the initial velocity of the stone as it is launched from the ground:

u_x = v_0 cos \theta = (25.0)(cos 41.0^{\circ})=18.9 m/s\\u_y = v_0 sin \theta = (25.0)(sin 41.0^{\circ})=16.4 m/s

The horizontal velocity remains constant, while the vertical velocity changes due to the acceleration along the vertical direction.

When the stone reaches the top of its parabolic path, the vertical velocity has became zero (because it is changing direction): so the speed of the stone is simply equal to the horizontal velocity, therefore

v=18.9 m/s

(b) 22.2 m/s

We can solve this part by analyzing the vertical motion only first. In fact, the vertical velocity at any height h during the motion is given by

v_y^2 - u_y^2 = 2ah (1)

where

u_y = 16.4 m/s is the initial vertical velocity

v_y is the vertical velocity at height h

a=g=-9.8 m/s^2 is the acceleration due to gravity (negative because it is downward)

At the top of the parabolic path, v_y = 0, so we can use the equation to find the maximum height

h_{max} = \frac{-u_y^2}{2a}=\frac{-(16.4)^2}{2(-9.8)}=13.7 m

So, at half of the maximum height,

h = \frac{13.7}{2}=6.9 m

And so we can use again eq(1) to find the vertical velocity at h = 6.9 m:

v_y = \sqrt{u_y^2 + 2ah}=\sqrt{(16.4)^2+2(-9.8)(6.9)}=11.6 m/s

And so, the speed of the stone at half of the maximum height is

v=\sqrt{v_x^2+v_y^2}=\sqrt{18.9^2+11.6^2}=22.2 m/s

(c) 17.4% faster

We said that the speed at the top of the trajectory (part a) is

v_1 = 18.9 m/s

while the speed at half of the maximum height (part b) is

v_2 = 22.2 m/s

So the difference is

\Delta v = v_2 - v_2 = 22.2 - 18.9 = 3.3 m/s

And so, in percentage,

\frac{\Delta v}{v_1} \cdot 100 = \frac{3.3}{18.9}\cdot 100=17.4\%

So, the stone in part (b) is moving 17.4% faster than in part (a).

4 0
2 years ago
Two identical carts travel at the same speed toward each other, and then a collision occurs. The graphs show the momentum of eac
madam [21]

Explanation :

The interaction between two objects is termed as the collision. The collision can be of two types i.e. elastic collision and inelastic collision.

In this case, two identical carts travel at the same speed toward each other, and then a collision occurs. In an inelastic collision, the momentum before and after the collision remains the same but its kinetic energy gets lost.

After the collision, both the object sticks over each other and moves with one velocity.

Out of the given graph, the graph that shows a perfectly inelastic collision is attached. It shows that after the collision both the carts move with the same velocity.

5 0
2 years ago
A 65-cm segment of conducting wire carries a current of 0.35 A. The wire is placed in a uniform magnetic field that has a magnit
Artyom0805 [142]

Answer: The angle between the wire segment and the magnetic field 66.42°

Explanation:

Please see the attachment below

8 0
2 years ago
Read 2 more answers
Why is the transverse spatial extent of a photon proportional to its wavelength which is a longitudinal quantity?
otez555 [7]
In quantum mechanics, particularly the wave-particle theory, it states that light behaves like a wave or a particle. For the wave behavior, its movement is measured in wavelengths while the time for each wavelength is the frequency. For the particle behavior, according to Planck, the energy of the photon (light particle) is determined as

E = hc/wavelength, where h is the Planck's constant (<span>6.626 x 10-34 J-s per particle) and c is the speed of light ( 3 x 10^8m/s)

As you can see, the energy of the photon is INVERSELY PROPORTIONAL to the wavelength with the Planck's constant as the constant of proportionality.</span>
7 0
2 years ago
Other questions:
  • A pulley system used to lift car tires has a mechanical advantage of 11.2. If you pull on the pulley with a force of 150 N, how
    12·2 answers
  • Argelia has a stack of schoolbooks sitting in the backseat of her car. When Argelia makes a sharp right turn, the books slide to
    11·2 answers
  • Angelina jumps off a stool. As she is falling, the Earth’s gravitational force on her is larger in magnitude than the gravitatio
    15·2 answers
  • Sonya is playing a board game, and each space on the board game measures 1 centimeter. She moves her game token 5 spaces up from
    11·2 answers
  • The following diagram shows resistors in ___ and is ____ of the arrangement of circuit elements in homes.
    6·2 answers
  • A point charge of 6.8 C moves at 6.5 × 104 m/s at an angle of 15° to a magnetic field that has a field strength of 1.4 T.
    5·2 answers
  • 2. A pebble is dropped down a well and hits the water 1.5 s later. Using the equations for motion with constant acceleration, de
    14·1 answer
  • The resistance of a very fine aluminum wire with a 20 μm × 20 μm square cross section is 1200 Ω . A 1200 Ω resistor is made by w
    7·1 answer
  • Reset the PhET simulation (using the button in the lower right) and set it up in the following manner: select Oscillate, select
    15·1 answer
  • Apollo 14 astronaut Alan B. Shepard Jr. used an improvised six-iron to strike two golf balls while on the Fra Mauro region of th
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!