I think that the girl has greater tangential acceleration because she is closer to the center and the acceleration is greater there.
Answer:

Explanation:
The acceleration of an object is given by:

where
v is the final velocity
u is the initial velocity
t is the time interval it takes for the velocity to change from u to v
For the rocket in this problem,
u = 20,000 m/s
v = 24,000 m/s
t = 55.0 - 5.0 = 50.0 s
Substituting,

Answer:
The atomic weight in g/mole of the metal (molar mass) is 8.87.
Explanation:
To begin, it is possible to assume that, as a sample, it has 100 g of the compound. This means that:
- 52.92% metal: 52.92 g M
- 47.80% oxygen: 47.80 g O
Using the molar mass of oxygen, which is 16 g / mol, it is possible to calculate the amount of moles of oxygen present in the sample using the rule of three:

moles of oxygen=2.9875
The chemical formula of metal oxide tells you that:
2 M⁺³ + 3 O²⁻ ⇒ M₂O₃
In the previous equation you can see that you need 3 oxygen anions to react with two metal cations. Then:

You have 52.92 g of metal in the sample, then the molar mass of the metal is:

molar mass≅ 8.87 g/mol
<u><em> The atomic weight in g/mole of the metal (molar mass) is 8.87.</em></u>
The closest match to this value is Beryllium (Be), which has an atomic mass of 9.0122 g / mol.
Impulse = Integral of F(t) dt from 0.012s to 0.062 s
Given that you do not know the function F(t) you have to make an approximation.
The integral is the area under the curve.
The problem suggest you to approximate the area to a triangle.
In this triangle the base is the time: 0.062 s - 0.012 s = 0.050 s
The height is the peak force: 35 N.
Then, the area is [1/2] (0.05s) (35N) = 0.875 N*s
Answer> 0.875 N*s
Hi, thank you for posting your question here at Brainly.
To compute for the change in potential energy, the equation would be:
delta PE = mg*delta h
delta PE = 0.5*9.81*(2-1.8)
delta Pe = 0.98 J
The potential energy is converted to kinetic energy.