Answer: yes.
Explanation: The light that will be incidented on that metal is visible light.
It depends on 3 factors:
1. The temperature
2. The specific heat capacity of the metal
3. The thermal conductivity of the metal.
The metal getting warmer also depend on the reflection and the absorption of light energy in which it will surely absorb some energy and not reflect all.
When visible light is absorbed by an object, the object converts the short wavelength light into long wavelength heat. This causes the object to get warmer.
The thermal energy is where the work of friction comes from. That is what stops it eventually. In this case a counter force of 10N is applied over the distance of 30.0m. The energy is given by Force*Distance. Here this is 300J. This friction work is the thermal energy.
Answer:
0.0367
Explanation:
The loss in kinetic energy results into work done by friction.
Since kinetic energy is given by
KE=0.5mv^{2}
Work done by friction is given as
W= umgd
Where m is the mass of suitacase, v is velocity of the suitcase, g is acceleration due to gravity, d is perpendicular distance where force is applied and u is coefficient of kinetic friction.
Making u the subject of the formula then we deduce that

Substituting v with 1.2 m/s, d with 2m and taking g as 9.81 m/s2 then

Therefore, the coefficient of kinetic friction is approximately 0.0367
Answer:
Explanation:
To convert gram / centimeter³ to kg / m³
gram / centimeter³
= 10⁻³ kg / centimeter³
= 10⁻³ / (10⁻²)³ kg / m³
= 10⁻³ / 10⁻⁶ kg / m³
= 10⁻³⁺⁶ kg / m³
= 10³ kg / m³
So we shall have to multiply be 10³ with amount in gm / cm³ to convert it into kg/m³
2.33 gram / cm³
= 2.33 x 10³ kg / m³ .
Answer:
The distance between the places where the intensity is zero due to the double slit effect is 15 mm.
Explanation:
Given that,
Distance between the slits = 0.04 mm
Width = 0.01 mm
Distance between the slits and screen = 1 m
Wavelength = 600 nm
We need to calculate the distance between the places where the intensity is zero due to the double slit effect
For constructive fringe
First minima from center

Second minima from center

The distance between the places where the intensity is zero due to the double slit effect



Put the value into the formula



Hence, The distance between the places where the intensity is zero due to the double slit effect is 15 mm.