We are given
the torque requirement of 97 Newton meter.
The formula of the torque is
τ = r * F * sinθ
where
τ is the torque
r = radius from the axis of rotation to the point of application.
F = force exerted
θ = the angle between the lever arm and the radius
Try to substitute the given and solve for F.
Answer:
The answer is "Option b, c, and a".
Explanation:
Here that the earth pulls on the phone, as it will accelerate towards Earth when we drop it.
We now understand the effects of gravity:

The force of the sun is, therefore,
times greater and the proper sequence, therefore, option steps are:
b. Pull-on phone from earth
c. Pull-on phone from sun
a. Pull phone from you
Correct option: A
An object remains at rest until a force acts on it.
As the water moves faster, it applies greater force on the sediment, which over comes the frictional forces between the bed and the sediment. So, when the river flows faster, more and larger sediment particles are carried away. When the flow slows down, the river couldn't apply enough force on the larger sediments which can overcome the frictional force between the sediment and the river bed. So, the net force on the heavier particles become zero. Hence, the heavier particles of the load will settle out.
F= (speed)/(wavelength)
Therefore, speed = Frequency x wavelength
V = 68m/s
I am pretty sure the answer would be too stretch