If the boat's velocity is 18m/sec relative to the water in the river and not the shore, it would need to be added the river speed of 2.5m/sec to get a total of 20.5m/sec. The 20.5m/sec would then be the total velocity of the boat relative to the shore. From personal experience, I know that when one runs with the tide, one is adding the tide flow speed to one's boat speed (what it would be in neutral waters) to get a sometimes much faster speed.
Answer:
The answer is "between 20 s and 30 s".
Explanation:
Calculating the value of positive displacement:


Calculating the value of negative displacement upon the time t:




That's why its value lie in "between 20 s and 30 s".
Answer:
In February 1784, just after the close of the Revolutionary War, the General Assembly of Georgia earmarked 40,000 acres of land to endow "a college or seminary of learning." The following year, Abraham Baldwin, a lawyer and minister educated at Yale University in New Haven, Connecticut, who had settled in Georgia
Explanation:
please mark this answer as brainliest
Answer:
B. 4 m/s
Explanation:
v=d/t
Running for 300 m at 3 m/s takes 100 seconds and running at 300 m at 6 m/s takes 50 seconds. 100 s + 50 s = 150 s (total time). Total distance is 600 m, so 600 m/ 150 s = 4 m/s.
Given that,
Distance in south-west direction = 250 km
Projected angle to east = 60°
East component = ?
since,
cos ∅ = base/hypotenuse
base= hyp * cos ∅
East component = 250 * cos 60°
East component = 125 km