Explanation:
According to Dalton's atomic theory, all the atoms are individual, all the atoms of the same element are identical in properties and mass, the compound is formed from two or more kinds of the atoms, all the matter is made up of small atoms and the chemical reaction is a rearrangement of the atoms.
The discoveries which contradicts the components of Dalton's atomic theory from the given discoveries are:
Nuclear reactions can change an atom of one element into an atom of another element.
Atoms of a given element can have different numbers of neutrons.
Atoms contain smaller particles: protons, neutrons, and electrons.
Answer:
13.9
Explanation:
Apparent weight is the normal force. Sum of the forces on the alloy when it is submerged:
∑F = ma
N + B − W = 0
N + ρVg − mg = 0
6.6 + (0.78 × 1000) V (9.8) − (0.750) (9.8) = 0
V = 9.81×10⁻⁵
If x is the volume of the first material, and y is the volume of the second material, then:
x + y = 9.81×10⁻⁵
(7.87×1000) x + (4.50×1000) y = 0.750
Two equations, two variables. Solve with substitution:
7870 (9.81×10⁻⁵ − y) + 4500 y = 0.750
0.772 − 7870 y + 4500 y = 0.750
0.0222 = 3370 y
y = 6.58×10⁻⁶
x = 9.15×10⁻⁵
The ratio of the volumes is:
x/y = 13.9
<span> Let’s determine the initial momentum of each car.
#1 = 998 * 20 = 19,960
#2 = 1200 * 17 = 20,400
This is this is total momentum in the x direction before the collision. B is the correct answer. Since momentum is conserved in both directions, this will be total momentum is the x direction after the collision. To prove that this is true, let’s determine the magnitude and direction of the total momentum after the collision.
Since the y axis and the x axis are perpendicular to each other, use the following equation to determine the magnitude of their final momentum.
Final = √(x^2 + y^2) = √(20,400^2 + 19,960^2) = √814,561,600
This is approximately 28,541. To determine the x component, we need to determine the angle of the final momentum. Use the following equation.
Tan θ = y/x = 19,960/20,400 = 499/510
θ = tan^-1 (499/510)
The angle is approximately 43.85˚ counter clockwise from the negative x axis. To determine the x component, multiply the final momentum by the cosine of the angle.
x = √814,561,600 * cos (tan^-1 (499/510) = 20,400</span>
Answer:
The distance of separation is 
Explanation:
The mass of the each ball is 
The negative charge on each ball is 
Now we are told that the lower ball is restrained from moving this implies that the net force acting on it is zero
Hence the gravitational force acting on the lower ball is equivalent to the electrostatic force i.e

=> 
here k the the coulomb's constant with a value 
So
![0.01 * 9.8 = \frac{ 9*10^9 *[1*10^{-6} * 1*10^{-6}]}{d}](https://tex.z-dn.net/?f=0.01%20%2A%209.8%20%20%3D%20%20%5Cfrac%7B%209%2A10%5E9%20%2A%5B1%2A10%5E%7B-6%7D%20%2A%201%2A10%5E%7B-6%7D%5D%7D%7Bd%7D)

If the car in the opposite direction turns the signal on your vehicle, then it is only likely to give way and let him or her turn before you make your turn because he or she is in the right of way and by doing this, it will prevent any complication from happening and to be able to show respect and politeness in driving.