answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Vaselesa [24]
2 years ago
6

Suppose you're on a hot air balloon ride, carrying a buzzer that emits a sound of frequency f. If you accidentally drop the buzz

er over the side while the balloon is rising at constant speed, what can you conclude about the sound you hear as the buzzer falls toward the ground?
A. the frequency remains the same, but the intensity decreases
B. the frequency decreases and the intensity increases
C. the frequency and intensity increase
D. the frequency decreases and the intensity decreases
Physics
1 answer:
Olin [163]2 years ago
3 0

Answer:

The correct answer is option 'd': The frequency decreases and the intensity of the sound decreases.

Explanation:

1) <u>Effect on Frequency </u>

According to Doppler's effect of sound we have

for a source of sound moving away from the observer the relation between the observed and the original frequency is given by

f_{app}=\frac{c-v_{rec}}{c+v_{s}}\times f_{original}

where

c = speed of sound in air

v_{rec} is the velocity of observer of sound

v_{s} is the velocity of source of sound

f_{o} is the original frequency of sound

As we see the ratio is less than 1 thus the frequency of sound that the observer receives is less than that of source.

2) <u>Effect on Intensity:</u>

At a distance 'r' from source emitting a wave of Power 'P' is given by

I=\frac{P}{4\pi r^{2}}

As we see on increasing 'r' intensity of sound decreases.

You might be interested in
When Trinity pulls on the rope with her weight, Newton's Third Law of Motion tells us that the rope will _____
Bingel [31]

When Trinity pulls on the rope with her weight, Newton's Third Law of Motion tells us that the rope will <u>"pull back".</u>


Newton's third law of motion expresses that, at whatever point a first question applies a power on a second object, the first object encounters a power meet in extent however inverse in heading to the power that it applies.  

Newton's third law of movement reveals to us that powers dependably happen in sets, and one question can't apply a power on another without encountering a similar quality power consequently. We once in a while allude to these power matches as "action-reaction" sets, where the power applied is the activity, and the power experienced in kind is the response (despite the fact that which will be which relies upon your perspective).

6 0
2 years ago
Read 2 more answers
You are moving at a speed 2/3 c toward randy when randy shines a light toward you. at what speed do you see the light approachin
yarga [219]
I see the light moving exactly at speed equal to c.

In fact, the second postulate of special relativity states that:
"The speed of light in free space has the same value c<span> in all inertial frames of reference."
</span>
The problem says that I am moving at speed 2/3 c, so my motion is a uniform motion (constant speed). This means I am in an inertial frame of reference, so the speed of light in this frame must be equal to c.
3 0
1 year ago
Chris and Jamie are carrying Wayne on a horizontal stretcher. The uniform stretcher is 2.00 m long and weighs 100 N. Wayne weigh
PIT_PIT [208]

Complete Question

The diagram for this question is shown on the first uploaded image

Answer:

The value is F_j  =  550\ N

Explanation:

From the question we are told that

   The length of the stretcher is  d =  2.0 \  m

    The weight of the stretcher is W  =  100 \  N

    The weight for Wayne is  W_w =  800 \ N

     The distance of  center of gravity for Wayne from Chris is c_w = 75 cm  =  0.75 \ m

Generally taking moment about the first end where Chris is

         F_j *  d              => upward moment

Here F_j is the force applied by Jamie

Generally  taking moment about the second end where Jamie is

      W *  ( \frac{d}{2} ) +  W_w * (d - c_w)      => downward moment

Generally at equilibrium , the upward moment is equal to the downward moment

     F_j *  d = W *  ( \frac{d}{2} ) +  W_w * (d - c_w)

=>   F_j *  2  = 100 *  ( \frac{ 2}{2} ) +  800 * (2 - 0.75)

=>    F_j  =  550\ N

3 0
2 years ago
An imaginary cubical surface of side L has its edges parallel to the x-, y- and z-axes, one corner at the point x = 0, y = 0, z
kodGreya [7K]

Find the given attachment for solution

7 0
2 years ago
How long will it take a 2190 W motor to lift a 1.47 x 104 g box, 6.34 x 104 mm vertically.​
Rasek [7]

Answer:

t = 4.17 [s]

Explanation:

We know that work is defined as the product of force by distance.

W = F*d

where:

F = force [N] (units of Newtons)

d = distance = 6.34 x 10⁴ [mm] = 63.4 [m]

In order to find the force, we must determine the weight of the box, the weight can be determined by means of the product of mass by gravitational acceleration.

w = m*g

where:

m = mass = 1.47 x 10⁴ [g] = 14.7 [kg]

g = gravity acceleration = 9.81 [m/s²]

w = 14.7*9.81

w = 144.2 [N]

Therefore the work can be calculated.

W = w*d

W = 144.2*63.4

W = 9142.72 [J] (units of Joules)

Power is now defined in physics as the relationship of work at a given time

P = W/t

where:

P = power = 2190 [W]

t = time [s]

Now clearing t, we have.

t = W/P

t = 9142.72/2190

t = 4.17 [s]

6 0
1 year ago
Other questions:
  • Lydia is often described as having a positive outlook on life. She assumes the best of people and situations. Lydia exemplifies
    14·2 answers
  • 40-turn circular coil (radius = 4.0 cm, total resistance = 0.20 ) is placed in a uniform magnetic field directed perpendicular
    5·1 answer
  • Calculate the intrapleural pressure if atmospheric pressure is 765 millimeters of mercury, assuming that the subject is at rest
    15·1 answer
  • A glider is gliding through the air at a height of 416 meters with a speed of 45.2 m/s. The glider dives to a height of 278 mete
    15·1 answer
  • A boy of mass 80 kg slides down a vertical pole, and a frictional force of 480 N acts on him. What is his acceleration as he sli
    5·1 answer
  • A box of books with mass 58 kg rests on the level floor of the campus bookstore. The floor is freshly waxed and has negligible f
    6·1 answer
  • Suppose we were to attempt to use a similar machine to measure the charge-to-mass ratio of protons, instead. Suppose, for simpli
    9·1 answer
  • A goose with a mass of 2.0 kg strikes a commercial airliner with a mass of 160,000 kg head-on. Before the collision, the goose w
    14·1 answer
  • A quarterback passes a football from height h = 2.1 m above the field, with initial velocity v0 = 13.5 m/s at an angle θ = 32° a
    9·1 answer
  • If a cliff jumper leaps off the edge of a 100m cliff, how long does she fall before hitting the water? (assume zero air resistan
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!