Answer:
3.5 cm
Explanation:
mass, m = 50 kg
diameter = 1 mm
radius, r = half of diameter = 0.5 mm = 0.5 x 10^-3 m
L = 11.2 m
Y = 2 x 10^11 Pa
Area of crossection of wire = π r² = 3.14 x 0.5 x 10^-3 x 0.5 x 10^-3
= 7.85 x 10^-7 m^2
Let the wire is stretch by ΔL.
The formula for Young's modulus is given by


ΔL = 0.035 m = 3.5 cm
Thus, the length of the wire stretch by 3.5 cm.
Answer:
0.6
Explanation:
The volume of a sphere = 
Therefore 
r of the disc = 
Using conservation of angular momentum;
The
of the sphere = 
of the disc = 

= 0.6
Answer:

Explanation:
The computation of the weight of the paper in newtons is shown below:
On the paper, the induced charge is of the same magnitude as on the initial charges and in sign opposite.
Therefore the paper charge is

Now the distance from the charge is

Now, to raise the paper, the weight of the paper acting downwards needs to be managed by the electrostatic force of attraction between both the paper and the charge, i.e.




Question 1:
Answer:
The moment of inertia of Alex's rolling hoop is 0.197 
Explanation:
<u>Given</u>:
Mass of the hoop = 0.350 g
Radius of the hoop = 75.0 cm
<u>To Find:</u>
The moment of inertia of Alex's rolling hoop = ?
<u>Solution</u><u>:</u>
The moment of inertia = 
where
m is the mass
r is the radius
Converting cm to m, we get
75.0 cm = 0.75 m
Now substituting the values,
=> moment of inertia = 
=> moment of inertia = 
=> moment of inertia = 
Question 2:
Answer:
The combined angular momentum of the masses is 1.76 
If she pulls her arms in to 0.12 m, her new linear speed is 
Explanation:
Given:
Mass = 2.0 kg
Radius = 0.8 m
Velocity = 1.2 m/s
a.The combined angular momentum of the masses:

Substituting the values,

L= 1.76 
b. If she pulls her arms in to 0.12 m, what is her new linear speed



