Answer:
They hit at the same time
Explanation:
The bullet that is fired horizontally, the horizontal component of the speed is the speed with which is its is fired and the vertical component of the speed comes in picture due to gravity only.
When the bullet is dropped from the same height, the horizontal component is zero but the vertical component arises from the gravity.
The vertical components of the velocity of both the bullets are same and thus, they fall at the same time.
<u>Answer: They hit at the same time</u>
Answer:
We can relate the kinetic energy of the particle to the potential difference between the plates by following equations:
Work energy theorem:




So,

If the distance is doubled and the potential difference is halved, then

Explanation:
As can be seen from the relationship between kinetic energy and the potential difference, the distance between the plates has no effect on the relation between kinetic energy and the potential difference. Since the charge of the second particle is equal to that of the first one, the new kinetic energy would be half of the first kinetic energy.
Answer:
So kinetic means to move, something like that right, so the two balls that go in the air are where the kinetic energy is.
Explanation:
Hope it helps.
Answer:
Explanation:
a )
This type of spectrum is called line emission spectrum . Because it consists of lines . It is emission spectrum because it is due to emission of radiation from a source .
b ) The wavelength of a photon is inversely proportional to its energy . Photon due to transition between n = 1 and n = 3 will have higher energy than
that due to transition between n = 2 and n = 5 . So the later photon ( B) will have greater wavelength or photon due to transition between n = 2 and n = 5 will have greater wavelength .
If the force were constant or increasing, we could guess that the speed of the sardines is increasing. Since the force is decreasing but staying in contact with the can, we know that the can is slowing down, so there must be friction involved.
Work is the integral of (force x distance) over the distance, which is just the area under the distance/force graph.
The integral of exp(-8x) dx that we need is (-1/8)exp(-8x) evaluated from 0.47 to 1.20 .
I get 0.00291 of a Joule ... seems like a very suspicious solution, but for an exponential integral at a cost of 5 measly points, what can you expect.
On the other hand, it's not really too unreasonable. The force is only 0.023 Newton at the beginning, and 0.000067 newton at the end, and the distance is only about 0.7 meter, so there certainly isn't a lot of work going on.
The main question we're left with after all of this is: Why sardines ? ?