Answer:
When the blood and the dialysate are flowing in the same direction, as the the dialysate and the blood move away from the region of higher concentration of the urea, to a region distant from the source, the concentration of urea in the blood stream and in the dialysis reach equilibrium and diffusion across the semipermeable membrane stops within the higher filter regions such as II, III, IV or V
However, for counter current flow, as the concentration of the urea in the blood stream becomes increasingly lesser the, it encounters increasingly unadulterated dialysate coming from the dialysate source, such that diffusion takes place in all regions of the filter
Explanation:
Answer:
D
Explanation:
pressure change have nothing to do with the spontaneity.
Entropy change , enthalpy change , temperature have roles in deciding spontaneity.
Answer:
Explanation:
A simple light microscope uses light for imaging of objects where as a transmission electron microscope uses a monochromatic beam of electrons.
This beam is passed by a magnetic field which is very strong and thus act as a lens.
Its resolution of very high which is about 0.2 nanometers because of the separation between two atoms.
Because of this reason its resolution is about 1000 times greater than light microscope.
F=ma
For the first (10kg) cart,
12=10a
a=6/5 m/s^2 to the left
For the second (5kg) cart,
8=5a
a=8/5 m/s^2 to the left
Therefore, the lighter (5kg) cart experiences a greater acceleration.
To answer the problem we would be using this formula which isv = sqrt(T/(m/L))
v = sqrt(100 N / [(0.100 kg)/(1.0 m)])
v = 31.62 m/s
v = fλ
31.62 m/s = (95 Hz)(λ)
λ = 0.333 m
For every wavelength along a string there will be 2 antinodes.
1.0 m / 0.333 m = 3
3 * 2 = 6 antinodes
6 + 1 = 7 nodes