Answer:
W = 9533.09 Watt
Explanation:
given,
diameter of pipe inlet, d₁ = 10 cm
r₁ = 5 cm
diameter of pipe outlet, d₂ = 15 cm
r₂= 7.5 cm
head upto water level is to rise = 60 + 5
= 65 m
flow rate = 0.015 m³/s
we know
A₁ v₁ = A₂ v₂ = Q
π r₁² v₁ = π r₂² v₂ = 0.015


v₂ = 0.848 m/s
v₁ = 1.908 m/s
Applying Bernoulli's equation
P_p is the pump pressure
Power of the pump
W = P_p x Q
W = 635539.32 x 0.015
W = 9533.09 Watt
Answer:
275 kPa
Explanation:
mass of the gas=m=1.5 kg
initial volume if the gas=V₁=0.04 m³
initial pressure of the gas= P₁=550 kPa
as the condition is given final volume is double the initial volume
V₂=final volume
V₂=2 V₁
As the temperature is constant
T₁=T₂=T
=
putting the values in the equation.
=
P₂=
P₂=
P₂=275 kPa
So the final pressure of the gas is 275 kPa.
Efficiency is defined as the measure of the amount of work or energy is conserved in a certain process. At all times, in every process, work or energy is always lost or wasted due to certain interference. Not all work given is converted to useful work or energy. Thus , efficiency is calculated by dividing the energy or work output to the energy or work input then the value is multiplied by 100 to express efficiency as percentage.
Efficiency = work output / work input
Efficiency = (1020 J / 1200 J) = 85%
Answer:
Current, I = 1000 A
Explanation:
It is given that,
Length of the copper wire, l = 7300 m
Resistance of copper line, R = 10 ohms
Magnetic field, B = 0.1 T

Resistivity, 
We need to find the current flowing the copper wire. Firstly, we need to find the radius of he power line using physical dimensions as :




r = 0.00199 m
or

The magnetic field on a current carrying wire is given by :



I = 1000 A
So, the current of 1000 A is flowing through the copper wire. Hence, this is the required solution.
Answer: The paper airplane will create a curved path towards the floor as it is pulled toward <u><em>Earth's center.</em></u>
Explanation: The paper airplane will be pulled to the center because <u><em>Earth has a much greater mass than objects on its surface.</em></u> And it will curve because of the amount of <u><em>force</em></u> you are putting onto the plane.