answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Olegator [25]
2 years ago
8

Consider the following spectrum where two colorful lines (A and B) are positioned on a dark background. The violet end of the sp

ectrum is on the left and the red end of the spectrum is on the right. A B 5. (1 point) What is the name for this type of spectrum? 6. (1 point) Transition A is associated with an electron moving between the n= 1 and n= 3 levels. Transition B is associated with an electron moving between the n= 2 and n= 5 levels. Which transition is associated with a photon of longer wavelength?
Physics
1 answer:
Dmitry_Shevchenko [17]2 years ago
3 0

Answer:

Explanation:

a )

This type of spectrum is called line emission spectrum . Because it consists of lines . It is emission spectrum because it is due to emission of radiation from a source .

b ) The wavelength of a photon  is inversely proportional to its energy .  Photon  due to transition between n = 1 and n = 3 will have higher energy than

that due to transition between n = 2 and n = 5 . So the later photon ( B)  will have greater wavelength or photon  due to transition between n = 2 and n = 5 will have greater wavelength .

You might be interested in
A 0.3 mm long invertebrate larva moves through 20oC water at 1.0 mm/s. You are creating an enlarged physical model of this larva
AleksandrR [38]

Answer:

Explanation:

For the problem, we should have same reynolds number

ρvd/mu = constant

1000×1×10⁻³×0.3×10⁻³/1.002×10⁻³ = 1400×0.5×d/600

d = 25.66 cm

5 0
2 years ago
A mass is tied to a string and swung in a horizontal circle with a constant angular speed. show answer No Attempt If this speed
Liono4ka [1.6K]

Answer:

The tension in the string is quadrupled i.e. increased by a factor of 4.

Explanation:

The tension in the string is the centripetal force. This force is given by

F = \dfrac{mv^2}{r}

m is the mass, v is the velocity and r is the radius.

It follows that F \propto v^2, provided m and r are constant.

When v is doubled, the new force, F_1, is

F_1 = \dfrac{m(2v)^2}{r} = \dfrac{4mv^2}{r} = 4\dfrac{mv^2}{r} = 4F

Hence, the tension in the string is quadrupled.

8 0
2 years ago
A lawn sprinkler sprays water 8 feet at full pressure as it rotates 360 degrees. if the water pressure is reduced by 50%, what i
lina2011 [118]
The area of the sprinkles can be determined through the area of a circle that is pi * r^2 in which the given dimensions above are the radii, r. The second scenarios radius is only half of the original, that is 4 ft. In this case, we can compute the area of the second again. We calculate next the difference of two areas of circles. 
7 0
2 years ago
The weight of spaceman Speff at the surface of planet X, solely due to its gravitational pull, is 389 N. If he moves to a distan
miv72 [106K]

Answer:

mass of the planet X = 5.6 × 10²³ kg.

Explanation:

According to Newtons law of universal gravitation,

F = GM₁M₂/r²

Where F = gravitational force, M₁ = mass of the speff, M₂ = mass of the planet X, G = gravitational constant r = distance between the speff and the planet X

making M₂ The subject of the equation above,

M₂ = Fr²/GM₁ .......................... equation 2

Where F = 24.31 N, r = 1.08×18⁴km ⇒( convert to m ) =1.08 × 10⁴  × 1000 m

r = 1.08  × 10⁷ m, G = 6.67  × 10 ⁻¹¹ Nm²/kg², M₁ = 75 kg

Substituting this values in equation 2,

M₂ = 24.13(1.08  × 10⁷ )²/75( 6.67  × 10 ⁻¹¹)

M₂ = 24.13 × 1.17 × 10¹⁴/500.25 × 10⁻¹¹

M₂ = (28.23 × 10¹⁴)/(500.25 × 10⁻¹¹)

M₂ = 0.056 × 10²⁵

M₂ = 5.6 × 10²³ kg.

Therefore mass of the planet X = 5.6 × 10²³ kg.

8 0
2 years ago
A rock of mass m is thrown horizontally off a building from a height h. the speed of the rock as it leaves the thrower's hand at
Stells [14]
The correct answer is <span>3) K_f =  \frac{1}{2}mv_0^2 + mgh.
</span>
In fact, the total energy of the rock when it <span>leaves the thrower's hand is the sum of the gravitational potential energy U and of the initial kinetic energy K:
</span>E=U_i+K_i=mgh +  \frac{1}{2}mv_0^2
<span>As the rock falls down, its height h from the ground decreases, eventually reaching zero just before hitting the ground. This means that U, the potential energy just before hitting the ground, is zero, and the total final energy is just kinetic energy: 
</span>E=K_f<span>
But for the law of conservation of energy, the total final energy must be equal to the tinitial energy, so E is always the same. Therefore, the final kinetic energy must be
</span>K_f = mgh +  \frac{1}{2}mv_0^2<span>
</span>

7 0
2 years ago
Other questions:
  • What is the magnitude of the external force f necessary to hold the cart motionless at point c?
    14·1 answer
  • A crate is placed on an adjustable, incline board. the coefficient of static friction between the crate and the board is 0.29.
    11·1 answer
  • What is the energy density in the magnetic field 25 cm from a long straight wire carrying a current of 12 a? (μ0 = 4π × 10-7 t ·
    6·1 answer
  • For lunch you and your friends decide to stop at the nearest deli and have a sandwich made fresh for you with 0.300 kg of Italia
    7·1 answer
  • A world class runner can run long distances at a pace of 15 km/hour. That runner expends 800 kilocalories of energy per hour. a)
    15·1 answer
  • Steam at 700 bar and 600 oC is withdrawn from a steam line and adiabatically expanded to 10 bar at a rate of 2 kg/min. What is t
    14·1 answer
  • 8. The resistance of a bagel toaster is 14 Ω. To prepare a bagel, the toaster is operated for one minute from a 120-V outlet. Ho
    9·2 answers
  • Nerve impulses are carried along axons, the elongated fibers that transmit neural signals. We can model an axon as a tube with a
    5·1 answer
  • Car A rounds a curve of 150‐m radius at a constant speed of 54 km/h. At the instant represented, car B is moving at 81 km/h but
    11·2 answers
  • A swimmer standing near the edge of a lake notices a cork bobbing in the water. While watching for one minute, she notices the c
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!