Rw^2 = GmM/r^2
<span> Leads to
</span><span> w^2 r^3 = GM
</span><span> (2pi /T) ^2 r^3 = GM
</span><span> 4pi^2 r^3 = GM T^2
</span><span> r^3 = GM T^2 / 4pi^2
</span><span> Work out r^3 then r.
</span> T = 125 min = 125(60) = 7500 s
<span> R = 6.38E6 m
</span><span> m = 5.97E24 kg
</span><span> G = 6.673E-11
</span> r=<span>
8279791.78</span><span> m
Since r = radius R of Earth + height above urface,h
</span><span> h = r - R = </span><span>
8279791.78 - </span>6.38E6 = <span>
<span>1899791.78 m
h=</span></span><span>
<span>1899.79178 Km</span></span>
Answer:
Kathmandu
Explanation:
As the altitude get higher, the gravitational pull of the earth on the object increases, therefore, the mass is higher up above.
The heat released by the water when it cools down by a temperature difference

is

where
m=432 g is the mass of the water

is the specific heat capacity of water

is the decrease of temperature of the water
Plugging the numbers into the equation, we find

and this is the amount of heat released by the water.
Answer:
The speed of the light signal as viewed from the observer is c.
Explanation:
Recall the basic postulate of the theory of relativity that the speed of light is the same in ALL inertial frames. Based on this, the speed of light is independent of the motion of the observer.