Answer:
Explanation:
Given
volume of sample 
Temperature 
Pressure 
for different conditions
Temperature 
Pressure 
suppose
is the volume of sample
Using ideal gas equation




Since we are given the density and volume, then perhaps we can determine the amount in terms of the mass. All we have to do is find the volume in terms of cm³ so that it will cancel out with the cm³ in the density. The conversion is 1 ft = 30.48 cm. The solution is as follows:
V = (14 ft)(15 ft)(8 ft)(30.48 cm/1 ft)³ = 0.0593 cm³
The mass is equal to:
Mass = (0.00118g/cm³)(0.0593 cm³)
Mass = 7 grams of HCN
Answer
given,


mass of book = 0.305 Kg
so, from the diagram attached below




computing horizontal component




θ = 62.35°
Ans: Beat Frequency = 1.97HzExplanation:
The fundamental frequency on a vibrating string is

<span> -- (A)</span>
<span>here, T=Tension in the string=56.7N,
L=Length of the string=0.66m,
m= mass = 8.3x10^-4kg/m * 0.66m = 5.48x10^-4kg </span>
Plug in the values in Equation (A)
<span>so </span>

<span> = 197.97Hz </span>
<span>the beat frequency is the difference between these two frequencies, therefore:
Beat frequency = 197.97 - 196.0 = 1.97Hz
-i</span>
Answer:395.6 m/s
Explanation:
Given
mass of bullet 
mass of wood block 
Length of string 
Center of mass rises to an height of 
initial velocity of bullet 
let
and
be the velocity of bullet and block after collision
Conserving momentum
-------------1
Now after the collision block rises to an height of 0.38 cm
Conserving Energy for block
kinetic energy of block at bottom=Gain in Potential Energy




substitute the value of
in equation 1

