Answer:

Explanation:
The free body diagram of the block on the slide is shown in the below figure
Since the block is in equilibrium we apply equations of statics to compute the necessary unknown forces
N is the reaction force between the block and the slide
For equilibrium along x-axis we have

Using value of N from equation β in α we get value of force as

Applying values we get

Your basically breaking the sound beerier <span />
Answer:
The terminal speed of this object is 12.6 m/s
Explanation:
It is given that,
Mass of the object, m = 80 kg
The magnitude of drag force is,

The terminal speed of an object is attained when the gravitational force is balanced by the gravitational force.



On solving the above quadratic equation, we get two values of v as :
v = 12.58 m/s
v = -15.58 m/s (not possible)
So, the terminal speed of this object is 12.6 m/s. Hence, this is the required solution.
Answer:
Option A; ITS SURFACE IS COOLER THAN THE SURFACE OF THE SUN.
Explanation:
A red supergiant star is a larger and brighter type of red giant star. Red supergiants are often variable stars and are between 200 to 2,000 times bigger than the Sun. Example is Betelgeuse.
Betelgeuse is one of the largest known stars, it has a diameter of about 700 times the size of the Sun or 600 million miles, it emits almost 7,500 times as much energy as the Sun, it has a rather low surface temperature (6000F compared to the Sun's 10,000F); this means that it has a more cooler surface than the Sun's surface.
This low temperature also means that the star will appear orange-red in color, and the combination of size and temperature makes it a kind of star called a red super giant.
Although, all the statements above are correct, the only one that can be inferred from the red color of Betelgeuse is that ITS SURFACE IS COOLER THAN THE SURFACE OF THE SUN.
Answer:
La velocidad angular del niño y del carrusel cuando se mueven juntos es 0.208 radianes por segundo.
Explanation:
Asumamos que tanto el niño como el carrusel no tienen carga externa aplicada sobre aquellos, de modo que se puede aplicar el Principio de Conservación de la Cantidad de Movimiento Angular:
(1)
Donde:
- Masa del niño, medida en kilogramos.
- Velocidad lineal inicial del niño, medida en metros por segundo.
- Radio máximo del carrusel, medida en metros.
- Momento de inercia del carrusel, medida en kilogramo-metros cuadrados.
- Velocidad angular final del sistema niño-carrusel, medida en radianes por segundo.
Si sabemos que
,
,
y
, tenemos que la velocidad angular final es:



La velocidad angular del niño y del carrusel cuando se mueven juntos es 0.208 radianes por segundo.