Acceleration is the change in velocity divided by time. The change in velocity is -30m/s and time is 5s. If you divide -30m/s by 5s, you get -6m/s<span>².</span>
Answer:
The atomic weight in g/mole of the metal (molar mass) is 8.87.
Explanation:
To begin, it is possible to assume that, as a sample, it has 100 g of the compound. This means that:
- 52.92% metal: 52.92 g M
- 47.80% oxygen: 47.80 g O
Using the molar mass of oxygen, which is 16 g / mol, it is possible to calculate the amount of moles of oxygen present in the sample using the rule of three:

moles of oxygen=2.9875
The chemical formula of metal oxide tells you that:
2 M⁺³ + 3 O²⁻ ⇒ M₂O₃
In the previous equation you can see that you need 3 oxygen anions to react with two metal cations. Then:

You have 52.92 g of metal in the sample, then the molar mass of the metal is:

molar mass≅ 8.87 g/mol
<u><em> The atomic weight in g/mole of the metal (molar mass) is 8.87.</em></u>
The closest match to this value is Beryllium (Be), which has an atomic mass of 9.0122 g / mol.
Humans can see wavelengths in the visible part of the electromagnetic spectrum. That is the range of approximately 400 - 700 nm. Honeybees can see visible light and about 100 nm more in the ultraviolet part of the electromagnetic spectrum. That is approximately 300 - 700 nm.
Answer:
The pressure corresponding to the absolute zero temperature is 0.997atm.
Explanation:
To solve this question, you draw a straight vertical line with the boiling point temperature and pressure on top of the line and the freezing point temperature and pressure on the lower part. The absolute temperature somewhere in the middle of the line with the pressure to be obtained.
So, we have;
0- (-19) / 100 - (-19) = P - 0.9267 / 1.366 - 0.9267
19 / 119 = P - 0.9267 / 0.4393
Cross multiply, we have
19 * 0.4393 = 119(P -0.9267)
8.3467 = 119P - 110.2773
119P = 118.624
P = 0.997 atm
So at 0°C, the pressure of the thermometer is 0.997atm.
<span><u>Answer
</u>
The mass of 220 lb football has less than 288 lb football. So, it will be easier to move it since it will require less force. The heavy football will have a bigger momentum. Since 288 lb has more weight than 220 lb, it will have bigger inertia making it difficult for the players to stop it.
This makes it easier to tackle 220 lb football than 288 lb football.
</span>