answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Stells [14]
1 year ago
6

A 2kg object is moving horizontally with a speed of 4 m/s. How much net force is required to keep the object moving at this spee

d and in this direction
Physics
2 answers:
Elza [17]1 year ago
8 0
We can solve this problem using the force equation.

Force = Mass * Acceleration

2kg * 4m/s = 8 N

The net force required to keep the object moving at this speed and in this direction is 8 N.


solniwko [45]1 year ago
8 0

Answer: F = 0, if you apply a force, the velocity of the object may change.

Explanation: If there is no force of friction or something like that, there is no actual force applied to the object, because it has not any acceleration. This means that the object reached an uniform motion state, this means that the object will move with the constant velocity until a force is applied over it. This is because if there is no force applied, there is no acceleration (by the second Newton's law, we have that F = m*a) and the acceleration is the rate of change of the velocity, so if there is no acceleration, there is no change in the velocity.

This means that the net force required to keep the object moving at 4m/s and un the same direction is zero; F = 0

You might be interested in
Assume the motions and currents mentioned are along the x axis and fields are in the y direction. (a) does an electric field exe
matrenka [14]
<span> (a) does an electric field exert a force on a stationary charged object? 
Yes. The force exerted by an electric field of intensity E on an object with charge q is
</span>F=qE
<span>As we can see, it doesn't depend on the speed of the object, so this force acts also when the object is stationary.

</span><span>(b) does a magnetic field do so?
No. In fact, the magnetic force exerted by a magnetic field of intensity B on an object with  charge q and speed v is
</span>F=qvB \sin \theta
where \theta is the angle between the direction of v and B.
As we can see, the value of the force F depends on the value of the speed v: if the object is stationary, then v=0, and so the force is zero as well.

<span>(c) does an electric field exert a force on a moving charged object? 
Yes, The intensity of the electric force is still
</span>F=qE
<span>as stated in point (a), and since it does not depend on the speed of the charge, the electric force is still present.

</span><span>(d) does a magnetic field do so?
</span>Yes. As we said in point b, the magnetic force is
F=qvB \sin \theta
And now the object is moving with a certain speed v, so the magnetic force F this time is different from zero.

<span>(e) does an electric field exert a force on a straight current-carrying wire?
Yes. A current in a wire consists of many charges traveling through the wire, and since the electric field always exerts a force on a charge, then the electric field exerts a force on the charges traveling through the wire.

</span><span>(f) does a magnetic field do so? 
Yes. The current in the wire consists of charges that are moving with a certain speed v, and we said that a magnetic field always exerts a force on a moving charge, so the magnetic field is exerting a magnetic force on the charges that are traveling through the wire.

</span><span>(g) does an electric field exert a force on a beam of moving electrons?
Yes. Electrons have an electric charge, and we said that the force exerted by an electric field is
</span>F=qE
<span>So, an electric field always exerts a force on an electric charge, therefore on an electron beam as well.

</span><span>(h) does a magnetic field do so?
Yes, because the electrons in the beam are moving with a certain speed v, so the magnetic force
</span>F=qvB \sin \theta
<span>is different from zero because v is different from zero.</span>
6 0
2 years ago
For which of the following problems would a scientist most likely use carbon-14?
spayn [35]

Answer:

To calculate the age of a piece of bone

Explanation:

Carbon 14 is an isotope of carbon that is unstable and decays into Nitrogen 14 by emitting an electron. The decay rate of radioactive material is  normally expressed in terms of its "half-life" (the time required by half the radioactive nuclei of a sample to undergo radioactive decay). The nice thing about carbon 14 is that its "half-life" is about 5730 years, which gives a nice reference to measure the age of fossils that are some thousand years old.

Carbon 14 dating is used to determine the age of objects that have been living organisms long ago. They measure how much carbon 14 is left in the object after years of decaying without having exchange with the ambient via respiration, ingestion, absorption, etc. and therefore having renewed the normal amount of carbon 14 that is in the ambient.

A rock is not a living organism, so its age cannot be determined by carbon 14 dating.

3 0
2 years ago
In a particular application involving airflow over a surface, the boundary layer temperature distribution may be approximated as
Anni [7]

Answer:

The Surface heat flux is -9205 W/m^2

Explanation:

 Explanation is in the following attachment    

8 0
2 years ago
Un alambre de 2m de longitud soporta una carga de 5400 N. El diámetro de la sección transversal es de 2 mm y el módulo de Young
tester [92]
Hey there, hope you’re having a positive day. Can you try translate this into English please, unfortunately I do not understand your question as I don’t understand your language. No hate towards you happy Thanksgiving
3 0
1 year ago
When you urinate, you increase pressure in your bladder to produce the flow. For an elephant, gravity does the work. An elephant
weqwewe [10]

Answer:

a) v =  1.19 m / s , b)   P₁ = 0.922 10⁵ Pa

Explanation:

1) Let's use the fluid continuity equation

       Q = A v

The area of ​​a circle is

      A = π r2 = π d²/4

     

     v = Q / A = Q 4 / pi d²

     v = 0.006 4/π 0.08²

     v =  1.19 m / s

2) write Bernoulli's equation, where point 1 is the bladder and point 2 is the urine exit point

     P₁ + ½ rho v₁² + rho g y₁ = P₂ + ½ rho v₂² + rho g y₂

The exercise tell us

P₂ = 1.0013 105 Pa

v₁ = 0

y₁ = 1 m

y₂=0  

Rho (water) = 1000 kg / m³

      P₁ + rho y₁ = P₂ + ½ rho v₂²

      P₁ = P₂ + ½ rho v₂² - rho g y₁

      P₁ = 1.013 10⁵ + ½ 1000 (1.19)² - 1000 9.8 1

      P₁ = 1.013 10⁵ +708.5  - 9800

      P₁ =  92208.5Pa

      P₁ = 0.922 10⁵ Pa

8 0
1 year ago
Other questions:
  • How long a time t will it take for the 133 54xe to decay so that eventually its activity decreases by a factor of 1024?
    7·2 answers
  • What is the most power in watts the ear can receive before the listener feels pain?
    10·1 answer
  • A small sphere with mass m carries a positive charge q and is attached to one end of a silk fiber of length L. The other end of
    5·1 answer
  • An archer shot a 0.06 kg arrow at a target. The arrow accelerated at 5,000 m/s2 to reach a speed of 50.0 m/s as it left the bow.
    10·1 answer
  • Three negative point charges q1 =-5 nC, q2 = -2 nC and q3 = -5 nC lie along a vertical line. The charge q2 lies exactly between
    8·1 answer
  • platform diving in the olympic games takes place at two heights: 5 meters and 10 meters. What is the velocity of a diver enterin
    5·1 answer
  • A 3.50-meter length of wire with a cross-sectional area of 3.14 × 10-6 meter2 is at 20° Celsius. If the wire has a resistance of
    11·1 answer
  • Shows the position-versus-time graph of a particle in SHM. Positive direction is the direction to the right.
    6·1 answer
  • A 50.0 Watt stereo emits sound waves isotropically at a wavelength of 0.700 meters. This stereo is stationary, but a person in a
    9·1 answer
  • 2. Heavier football players tend to play on the front line. Why? <br> What law is it?
    10·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!