answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Leokris [45]
2 years ago
15

Which of the following statements cannot be supported by Kepler's laws of planetary motion?

Physics
1 answer:
gladu [14]2 years ago
8 0

Answer:

The rotational speed of the four smallest planets can be determined using the rotational speeds of the four largest planets and their orbital periods.

Explanation:

Kepler's three laws are:

1) The orbits of the planets around the Sun are ellipses, with the Sun at one of the focii

2) A line connecting the Sun with each planet sweeps out equal areas in equal time intervals

3) The cube of the semi-major axis of the orbit of one planet is proportional to the square of its orbital period

There 3 laws help explaining the following statements:

- <em>A planet's distance from the sun will not be the same in six months. --> </em>using the 1st law. In fact, since the orbit is an ellipse (and not a circle), and the Sun is at one of the focii, the distance of the planet from the Sun keeps changing during the year.

-<em> A planet's speed as it moves around the sun will not be the same in six months. -</em>-> using the 2nd law. In fact, since the line connecting the Sun to the planet must cover equal areas in the same time interval, it follows that the speed of the planet cannot be constant during the year (it will be faster when closer to the sun and slower when far from the sun).

- <em>The average distance of Saturn can be calculated using the average distance of Neptune and the orbital period of both planets. </em>--> using the 3rd law. In fact, the ratio \frac{a^3}{T^2} (where a is the semi-major axis of the orbit and T the orbital period) is constant and it is the same for every planet orbiting the sun, so by knowing the data of Neptune and the orbital period of Saturn, it is possible to calculate Saturn's average distance.

Instead, the following statement:

<em>The rotational speed of the four smallest planets can be determined using the rotational speeds of the four largest planets and their orbital periods.</em>

Is not supported by any Kepler's law.

You might be interested in
A person in a boat sees a fish in the water (n = 1.33, the light rays making an angle of 40? relative to the water's surface. wh
jek_recluse [69]
We know that the measure of an incident ray is:  α 1 = 40°.
The index of refraction:
- for the air : n 1 = 1.00,
- for the water: n 2 = 1.33
Snell`s Law of Refraction :
n 1 · sin α 1 = n 2 · sin α 2
sin α 2 = n 1 · sin α 1 / n 2 =
= 1.00 · sin 40° / 1.33 = 0.64278 / 1.33 = 0.4833
α 2 = sin ^(-1) 0.4833
α 2 = 28.9 °
Answer: The angle relative to the water`s surface of the rays when beneath the surface is 28.9°.

4 0
2 years ago
This is really urgent
hodyreva [135]

20) When light passes from air to glass and then to air

21) When a light ray enters a medium with higher optical density, it bends towards the normal

22) Index of refraction describes the optical density

23) Light travels faster in the material with index 1.1

24) Glass refracts light more than water

25) Index of refraction is n=\frac{c}{v}

26) Critical angle: [tex]sin \theta_c = \frac{n_2}{n_1}[/tex]

27) Critical angle is larger for the glass-water interface

Explanation:

20)

It is possible to slow down light and then speed it up again by making light passing from a medium with low optical density (for example, air) into a medium with higher optical density (for example, glass), and then make the light passing again from glass to air.

This phenomenon is known as refraction: when a light wave crosses the interface between two different mediums, it changes speed (and also direction). The speed decreases if the light passes from a medium at lower optical density to a medium with higher optical density, and viceversa.

21)

The change in direction of light when it passes through the boundary between two mediums is given by Snell's law:

n_1 sin \theta_1 = n_2 sin \theta_2

with

n_1, n_2 are the refractive index of 1st and 2nd medium

\theta_1, \theta_2 are the angle of incidence and refraction (the angle between the incident ray (or refracted ray) and the normal to the boundary)

The larger the optical density of the medium, the larger the value of n, the smaller the angle: so, when a light ray enters a medium with higher optical density, it bends towards the normal.

22)

The index of refraction describes the optical density of a medium. More in detail:

  • A high index of refraction means that the material has a high optical density, which means that light travels more slowly into that medium
  • A low index of refraction means that the material has a low optical density, which means that light travels faster into that medium

Be careful that optical density is a completely different property from density.

23)

As we said in part 22), the index of refraction describes the optical density of a medium.

In this case, we have:

  • A material with refractive index of 1.1
  • A material with refractive index of 2.2

As we said previously, light travels faster in materials with a lower refractive index: therefore in this case, light travels more quickly in material 1, which has a refractive index of only 1.1, than material 2, whose index of refraction is much higher (2.2).

24)

Rewriting Snell's law,

sin \theta_2 = \frac{n_1}{n_2}sin \theta_1 (1)

For light moving from air to water:

n_1 \sim 1.00 is the index of refraction of air

n_2 = 1.33 is the index of refraction ofwater

In this case, \frac{n_1}{n_2}=\frac{1.00}{1.33}=0.75

For light moving from air to glass,

n_2 = 1.51 is the index of refraction of glass

And so

\frac{n_1}{n_2}=\frac{1.00}{1.51}=0.66

From eq.(1), we see that the angle of refraction \theta_2 is smaller in the 2nd case: so glass refracts light more than water, because of its higher index of refraction.

25)

The index of refraction of a material is

n=\frac{c}{v}

c is the speed of light in a vacuum

v is the speed of light in the material

So, the index of refraction is inversely proportional to the speed of light in the material:

  • The higher the index of refraction, the slower the light
  • The lower the index of refraction, the faster the light

26)

From Snell's law,

sin \theta_2 = \frac{n_1}{n_2}sin \theta_1

We notice that when light moves from a medium with higher refractive index to a medium with lower refractive index, n_1 > n_2, so \frac{n_1}{n_2}>1, and since sin \theta_2 cannot be larger than 1, there exists a maximum value of the angle of incidence \theta_c (called critical angle) above which refraction no longer occurs: in this case, the incident light ray is completely reflected into the original medium 1, and this phenomenon is called total internal reflection.

The value of the critical angle is given by

sin \theta_c = \frac{n_2}{n_1}

For angles of incidence above this value, total internal reflection occurs.

27)

Using:

sin \theta_c = \frac{n_2}{n_1}

For the interface glass-air,

n_1 \sim 1.51\\n_2 = 1.00

The critical angle is

\theta_c = sin^{-1}(\frac{n_2}{n_1})=sin^{-1}(\frac{1.00}{1.51})=41.5^{\circ}

For the interface glass-water,

n_1 \sim 1.51\\n_2 = 1.33

The critical angle is

\theta_c = sin^{-1}(\frac{n_2}{n_1})=sin^{-1}(\frac{1.33}{1.51})=61.7^{\circ}

So, the critical angle is larger for the glass-water interface.

Learn more about refraction:

brainly.com/question/3183125

brainly.com/question/12370040

#LearnwithBrainly

7 0
2 years ago
How did the team determine that the body was placed in a wood chipper?
jenyasd209 [6]
What team are you talking about
3 0
2 years ago
Read 2 more answers
Assume that segment r exerts a force of magnitude t on segment l. what is the magnitude flr of the force exerted on segment r by
mrs_skeptik [129]
If we are talking on the force being exerted by a segment of a rope of lenght R on the right on a point M which is being also pulled from the Left by a segment of rope R  as shown in the figure attached. Then we invoke Newton's Third Law:
"Any force exerted by an object (in this case a segment of the rope) also suffers a equal and opposite force".
If we pick T_R=T whis is the tension exerted by the right segment then the left segment will also exert an equal and opposite force so we have that T_L=-T

8 0
2 years ago
Have you ever chewed on a wintergreen mint in front of a mirror in the dark? If you have, you may have noticed some sparks of li
lutik1710 [3]

Answer:

Part a)

E = 3.66 eV

Part b)

\lambda = 508.5 nm

Explanation:

Part a)

change in the energy due to decay of photon is given as

E = h\nu

here we know that

\nu = 8.88 \times 10^{14} Hz

now we have

E = (6.6 \times 10^{-34})(8.88 \times 10^{14})

E = 5.86 \times 10^{-19} J

E = 3.66 eV

Part b)

While electron return to its ground state it will emit a photon of energy 2/3rd of the total energy

so we have

\Delta E = \frac{2}{3}(3.66 eV)

\Delta E = 2.44 eV

now to find the wavelength we have

\Delta E = \frac{hc}{\lambda}

2.44 = \frac{1242}{\lambda}

\lambda = 508.5 nm

3 0
2 years ago
Other questions:
  • A 2.0-kg object is lifted vertically through 3.00 m by a 150-N force. How much work is done on the object by gravity during this
    9·2 answers
  • (a) Triply charged uranium-235 and uranium-238 ions are being separated in a mass spectrometer. (The much rarer uranium-235 is u
    6·1 answer
  • An airliner of mass 1.70×105kg1.70×105kg lands at a speed of 75.0 m/sm/s. As it travels along the runway, the combined effects o
    5·1 answer
  • If an irregularly shaped object (such as a wrench) is dropped from rest in a classroom and feels no air resistance, it will:
    6·1 answer
  • A ball bearing of radius of 1.5 mm made of iron of density
    11·1 answer
  • Gretchen runs the first 4.0 km of a race at 5.0 m/s. Then a stiff wind comes up, so she runs the last 1.0 km at only 4.0 m/s.
    9·1 answer
  • An escaped convict runs 1.70 km due East of the prison. He then runs due North to a friend's house. If the magnitude of the conv
    7·1 answer
  • Calculate the force of gravity between two objects of masses 1300 kg and 7800 kg, which are 0.23 m apart.
    6·1 answer
  • A 16 g ball at the end of a 1.4 m string is swung in a horizontal circle. It revolves once every 1.09 s. What is the magnitude o
    9·1 answer
  • Which season is signaled by average lower temperature and indirect, angled sunlight?
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!