Answer:velocity = 7.26 * 10^6 m/sec
Explanation:The rule that is used to solve this problem is shown in the attached image.
The variables are as follows:
k = 8.99 * 10^9 Nm^2 / C^2
e is the electron charge = -1.6 * 10^-19 C
q is the charge given = 1 * 10^-9 C
m is the mass of the electron = 9.11 * 10^-31
r1 is the radius of starting point = 3 cm = 0.03 m
r2 is the radius of the sphere = 2 cm = 0.02 m
Substitute with the givens in the equation to get the value of the velocity
Hope this helps :)
Answer:
a) 1.2*10^-7 m
b) 1.0*10^-7 m
c) 9.7*10^-8 m
d) ultraviolet region
Explanation:
To find the different wavelengths you use the following formula:

RH: Rydberg constant = 1.097 x 10^7 m^−1.
(a) n=2

(b)

(c)

(d) The three lines belong to the ultraviolet region.
Answer:
The right approach will be "47° north of east".
Explanation:
The given values are:
East of prison
= 1.70 km
Displacement vector
= 2.50 km
Now,
The direction will be:
⇒ 
⇒ 
⇒ 
i,e.,
(north of east)
Answer:
The value of tension on the cable T = 1065.6 N
Explanation:
Mass = 888 kg
Initial velocity ( u )= 0.8 
Final velocity ( V ) = 0
Distance traveled before come to rest = 0.2667 m
Now use third law of motion
=
- 2 a s
Put all the values in above formula we get,
⇒ 0 =
- 2 × a ×0.2667
⇒ a = 1.2 
This is the deceleration of the box.
Tension in the cable is given by T = F = m × a
Put all the values in above formula we get,
T = 888 × 1.2
T = 1065.6 N
This is the value of tension on the cable.
A. Density only depends on the substance. It doesn't matter whether you have a little chip of it or a supertanker full of it ... the density doesn't change.