answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Molodets [167]
2 years ago
15

Ocean waves are observed to travel to the right along the water surface during a developing storm. A Coast Guard weather station

observes that there is a vertical distance from high point to low point of 4.6 meters and a horizontal distance of 8.6 meters between adjacent crests. The waves splash into the station once every 6.2 seconds. Determine the amplitude, wavelength, frequency and period of these waves. Write out the equation that governs this behavior.

Physics
1 answer:
Nuetrik [128]2 years ago
6 0

Answer:

The amplitude is  2.3 m

The Wavelength is 8.6 m

The frequency is 0.16 Hz

The time period is 6.25 sec

The equation that governs the behavior is  Y=(2.3)sin[(\frac{2\pi}{8.6} )x -(\frac{2\pi}{6.2} )t]

Explanation:

The explanation is shown on the first uploaded image

You might be interested in
Suppose you have a pendulum clock which keeps correct time on Earth(acceleration due to gravity = 1.6 m/s2). For ever hour inter
satela [25.4K]

The time-period of a simple pendulum is

<em>Time =  2 π √(length/grav-accel)</em>

After unraveling the question, then completing it, and working out what I <em>believe</em> it's trying to ask, the choice that correctly answers the question that I have invented is <em>choice-E</em> .

7 0
1 year ago
When calculating the mechanical advantage of a lever, what two pieces of information are needed?
DIA [1.3K]
From the items on this list, the only one that allows calculation
of the mechanical advantage is 'B' ... the lengths from the fulcrum
to the effort and the resistance.

The MA can also be calculated when you know the two forces ...
the effort and the resistance ... when the lever is just balanced.
4 0
2 years ago
Read 2 more answers
When a particle is a distance r from the origin, its potential energy function is given by the equation U(r)=kr, where k is a co
Reika [66]

Answer

The answer and procedures of the exercise are attached in the following archives.

Step-by-step explanation:

You will find the procedures, formulas or necessary explanations in the archive attached below. If you have any question ask and I will aclare your doubts kindly.  

5 0
2 years ago
A construction worker accidentally drops a brick from a high scaffold. a. What is the brick's velocity after 4.0 s? b. How far d
AlekseyPX

Answer:

A. 39.2 m/s

B. 78.4 m

Explanation:

Data obtained from the question include:

Time (t) = 4 s

Acceleration due to gravity (g) = 9.8 m/s²

A. Determination of the brick's velocity.

Time (t) = 4 s

Acceleration due to gravity (g) = 9.8 m/s²

Velocity (v) =?

v = gt

v = 4 × 9.8

v = 39.2 m/s

Thus, the brick's velocity after 4 s is 39.2 m/s

B. Determination of how far the brick fall in 4 s.

Time (t) = 4 s

Acceleration due to gravity (g) = 9.8 m/s²

Height (h) =?

h = ½gt²

h = ½ × 9.8 × 4²

h = 4.9 × 16

h = 78.4 m

Thus, the brick fall 78.4 m during the time.

5 0
1 year ago
The Lamborghini Huracan has an initial acceleration of 0.85g. Its mass, with a driver, is 1510 kg. If an 80 kg passenger rode al
SashulF [63]

Answer:

7.9 \frac{m}{s^{2} }

Explanation:

Take the fact that mass is inversely proportional to accelertation:

m ∝ a

Therefore m = a, but because we are finding the change in acceleration, we would set our problem up to look more like this:

\frac{m_{1} }{m_{2} } = \frac{a_{2} }{a_{1} } \\

Using algebra, we can rearrange our equation to find the final acceleration, a_{2}:

a_{2}  = \frac{a_{1}*m_{1}  }{m_{2} } \\

Before plugging everything in, since you are being asked to find acceleration, you will want to convert 0.85g to m/s^2. To do this, multiply by g, which is equal to 9.8 m/s^2:

0.85g * 9.8 \frac{m }{s^{2} } = 8.33 \frac{m }{s^{2} }

Plug everything in:

7.9 \frac{m }{s^{2} } = \frac{ 8.33\frac{m}{s^{2} }*1510kg }{1590kg}

(1590kg the initial weight plus the weight of the added passenger)

8 0
1 year ago
Other questions:
  • Rahul sees a flock of birds. He watches as the flying birds land in neat little rows on several power lines. Which change of sta
    10·2 answers
  • A leaky faucet drips 40 times in 30.0 s. what is the frequency of the dripping?
    13·1 answer
  • An undiscovered planet, many light-years from Earth, has one moon which has a nearly circular periodic orbit. If the distance fr
    9·1 answer
  • Blank can cause magma within Earth to blank resulting in the formation of blank rock
    7·1 answer
  • Trained dolphins are capable of a vertical leap of 7.0m straight up from the surface of the water-an impressive feat.Suppose you
    15·1 answer
  • A beaker is filled to the brim with water. A solid object of mass 3.00 kg is lowered into the beaker so the object is fully subm
    8·1 answer
  • A vessel at rest at the origin of an xy coordinate system explodes into three pieces. Just after the explosion, one piece, of ma
    15·1 answer
  • Dante uses 14 J of work to lift a weight for 30 seconds. How much power did he use?
    14·1 answer
  • A particle is located on the x axis at x = 2.0 m from the origin. A force of 25 N, directed 30° above the x axis in the x-y plan
    8·1 answer
  • Adam observed properties of four different waves and recorded observations about the frequency and volume of each one in his cha
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!