I know you are Indian by your question, HC Verma class 9 or 11 !!
if you got any problem, comment !!
Answer:
The distance between knothole and the paint ball is 0.483 m.
Explanation:
Given that,
Height = 4.0 m
Distance = 15 m
Speed = 50 m/s
The angle at which the forester aims his gun are,




Using the equation of motion of the trajectory
The horizontal displacement of the paint ball is


Using the equation of motion of the trajectory
The vertical displacement of the paint ball is



Put the value into the formula


We need to calculate the distance between knothole and the paint ball



Hence, The distance between knothole and the paint ball is 0.483 m.
Nope, I disagree with the former answer. The answer is definitely Z. <u>W area</u> (boxed with red outline) is represented as the hot reservoir while <u>Z area</u> is the cold reservoir (boxed with blue outline). X area is the heat engine itself and Y area is the work produced from thermal energy from hot reservoir. Typically, all heat engines lose some heat to the environment (based from the second law of thermodynamics) that is symbolically illustrated by the lost energy in the cold reservoir. This lost thermal energy is basically the unusable thermal energy. The higher thermal energy lost, the less efficient your heat engine is.
Answer: 7022.2kg/m³, yes, I was cheated
Explanation:
Density of an object is defined as the ratio of the mass of the object to its volume. Mathematically;
Density = Mass/Volume
Note that the unit of both mass and volume must be standard unit.
Given mass = 0.0158kg
Dimension of the metal = 5mm×15mm×30mm
Note that 1mm = 0.001m
The volume of the metal will be
0.005×0.015×0.03
= 0.00000225m³
Density = 0.0158/0.00000225
Average density of the metal = 7022.2kg/m³
Since the standard density of Gold is 19,320kg/m³ and is higher than the density prescribed for me, it shows the I was cheated.