Answer:
Isothermal : P2 = ( P1V1 / V2 ) , work-done 
Adiabatic : : P2 =
, work-done =
W = 
Explanation:
initial temperature : T
Pressure : P
initial volume : V1
Final volume : V2
A) If expansion was isothermal calculate final pressure and work-done
we use the gas laws
= PIVI = P2V2
Hence : P2 = ( P1V1 / V2 )
work-done :

B) If the expansion was Adiabatic show the Final pressure and work-done
final pressure

where y = 5/3
hence : P2 = 
Work-done
W = 
Where 
In a circular motion scenario, the force that pulls the revolving object towards the centre is the force that produces the centripetal acceleration. So, in this case, the tension on the string is the force that pulls the puck towards the centre.
Therefore, it is the tension in the string that causes the centripetal acceleration of the puck
Hope I helped!! xx
Answer:
E=0
Explanation:
Electric field due to each thin sheet of charge=\sigma/2\varepsilon
let us say the right plate has positive charge density \varepsilonand left sheet has a negative charge density -\varepsilon .
In the region between the plates,the electric field due to each plate is in same direction,
E=\sigma/2\varepsilon-(-\sigma/2\varepsilon)
E=\sigma/\varepsilon
in the region outside the plates, the field due to the plates is in opposite directions
E=-\sigma/2\varepsilon-(-\sigma/2\varepsilon)
E=-\sigma/2\varepsilon+\sigma/2\varepsilon
E=0
It is definitely letter D. <span>A1 and B1 are like poles, but there is not enough information to tell whether they are north poles or south poles.
A1 and B1 is either both north poles or both south poles. Repulsion of both magnets says it all--like poles always repel while opposite poles always attract. Thus, the best conclusion to this would be choice D.</span>
Answer:
I am not a driver, but I think it's C.
Explanation: