answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
SVEN [57.7K]
1 year ago
9

A car is traveling in a race.The car went from initial velocity of 35m/s to the final velocity of 65m/s in 5 seconds what was th

e acceleration
Physics
2 answers:
I am Lyosha [343]1 year ago
8 0
Acceleration is the change in velocity divided by time. The change in velocity is -30m/s and time is 5s. If you divide -30m/s by 5s, you get -6m/s<span>².</span>
OverLord2011 [107]1 year ago
6 0

Answer:

Acceleration, a=6\ m/s^2

Explanation:

Given that,

Initial speed of the car, u = 35 m/s

Final speed of the car, v = 65 m/s

Time taken, t = 5 s

We need to find the acceleration of the car. It is given by :

a=\dfrac{v-u}{t}

a=\dfrac{65-35}{5}

a=6\ m/s^2

So, the acceleration of the car is 6\ m/s^2. Hence, this is the required solution.

You might be interested in
Water, initially saturated vapor at 4 bar, fills a closed, rigid container. The water is heated until its temperature is 360°C.
salantis [7]

Explanation:

Using table A-3, we will obtain the properties of saturated water as follows.

Hence, pressure is given as p = 4 bar.

u_{1} = u_{g} = 2553.6 kJ/kg

v_{1} = v_{g} = 0.4625 m^{3}/kg

At state 2, we will obtain the properties. In a closed rigid container, the specific volume will remain constant.

Also, the specific volume saturated vapor at state 1 and 2 becomes equal. So, v_{2} = v_{g} = 0.4625 m^{3}/kg

According to the table A-4, properties of superheated water vapor will obtain the internal energy for state 2 at v_{2} = v_{g} = 0.4625 m^{3}/kg and temperature T_{2} = 360^{o}C so that it will fall in between range of pressure p = 5.0 bar and p = 7.0 bar.

Now, using interpolation we will find the internal energy as follows.

 u_{2} = u_{\text{at 5 bar, 400^{o}C}} + (\frac{v_{2} - v_{\text{at 5 bar, 400^{o}C}}}{v_{\text{at 7 bar, 400^{o}C - v_{at 5 bar, 400^{o}C}}}})(u_{at 7 bar, 400^{o}C - u_{at 5 bar, 400^{o}C}})

     u_{2} = 2963.2 + (\frac{0.4625 - 0.6173}{0.4397 - 0.6173})(2960.9 - 2963.2)

                   = 2963.2 - 2.005

                   = 2961.195 kJ/kg

Now, we will calculate the heat transfer in the system by applying the equation of energy balance as follows.

      Q - W = \Delta U + \Delta K.E + \Delta P.E ......... (1)

Since, the container is rigid so work will be equal to zero and the effects of both kinetic energy and potential energy can be ignored.

            \Delta K.E = \Delta P.E = 0

Now, equation will be as follows.

           Q - W = \Delta U + \Delta K.E + \Delta P.E

           Q - 0 = \Delta U + 0 + 0

           Q = \Delta U

Now, we will obtain the heat transfer per unit mass as follows.

          \frac{Q}{m} = \Delta u

         \frac{Q}{m} = u_{2} - u_{1}

                      = (2961.195 - 2553.6)

                      = 407.595 kJ/kg

Thus, we can conclude that the heat transfer is 407.595 kJ/kg.

4 0
1 year ago
A model train engine was moving at a constant speed on a straight horizontal track. As the engine moved​ along, a marble was fir
bagirrra123 [75]

Answer:

The marble was moving in a projectile and the speed of the engine was 2.716 m/s

Explanation:

The vertical component of the marble's flight path relative to the train

is given by the equation y(t) = v*t - (4.9)*t^2,

where, v is the initial upward velocity of the marble relative to the train.  

So with y(1) = v - 4.9 = 0 we have  

v = 4.9 m/s.

The marble will reach maximum height after 0.5 seconds, at which the

height will be y(0.5) = (4.9)*(0.5) - (4.9)*(0.5)^2 = (4.9)*(0.25) = 1.225 m.

Now,  the marble has a vertical velocity component of 4.9 m/s and a horizontal velocity component

of V m/s such that tan(61) = 4.9 / V

V = 4.9 / tan(61) = 2.716 m/s

This horizontal velocity component of the marble is the same as the

speed of the train i.e. 2.716 m/s.

3 0
2 years ago
Mrs. Brown's class is studying magnets and electricity. At the end of the unit Claire states that magnets and electricity are bo
Gwar [14]

Answer:

Magnets can create electricity and electricity can create a magnetic force.

Both electric charges and magnets do not have to touch an object in order to exert a force on it.

Electromagnets use electricity to create a magnetic force.

Explanation:

7 0
1 year ago
Read 2 more answers
A certain rigid aluminum container contains a liquid at a gauge pressure of P0 = 2.02 × 105 Pa at sea level where the atmospheri
MaRussiya [10]

Answer:

dz=19217687.07\ m

Explanation:

Given:

  • initial gauge pressure in the container, P_0=2.02\times 10^{5}\ Pa
  • atmospheric pressure at sea level, P_a=1.01\times 10^5\ Pa
  • initial volume, V_0=4.4\times 10^{-4}\ m^3
  • maximum pressure difference bearable by the container, dP_{max}=2.26\times 10^{5}\ Pa
  • density of the air, \rho_a=1.2\ kg.m^{-3}
  • density of sea water, \rho_s=1.2\ kg.m^{-3}

<u>The relation between the change in pressure with height is given as:</u>

\frac{dP_{max}}{dz} =\rho_a.g_n

where:

dz = height in the atmosphere

g_n= standard value of gravity

<em>Now putting the respective values:</em>

\frac{2.26\times 10^{5}}{dz} =1.2\times 9.8

dz=19217.687\ km

dz=19217687.07\ m

Is the maximum height above the ground that the container can be lifted before bursting. (<em>Since the density of air and the density of sea water are assumed to be constant.</em>)

7 0
1 year ago
In the ENGR 10 lab (E391), there are 50 long light bulbs (P=100 W) and 30 regular bulbs (P=60 W). How much energy is consumed li
Alenkinab [10]

Answer:

Total energy saving will be 0.8 KWH

Explanation:

We have given there are 50 long light bulbs of power 100 W so total power of 50 bulb = 100×50 = 5000 W = 5 KW

30 bulbs are of power 60 W

So total power of 30 bulbs = 30×60 = 1800 W = 1.8 KW

Total power of 80 bulbs = 1.8+5 = 6.8 KW

Total time = 3 hour

We know that energy E=power\times time=6.8\times 3=20.4KWH

Now power of each CFL bulb = 25 W

So power of 80 bulbs = 80×25 = 2000 W = 2 KW

Energy of 80 bulbs = 2×3 = 6 KWH

So total energy saving = 6.8-6 = 0.8 KWH

6 0
2 years ago
Other questions:
  • A tennis player who is recovering from an ankle injury and is not allowed to change directions can maintain her cardio fitness l
    12·2 answers
  • Every morning Ann walks her dog through the park, shown as a green square on the diagram below. They start at point 1, walk one
    11·1 answer
  • Short-range forecasts tends to ________ longer-range forecasts.
    5·1 answer
  • While looking at bromine (Br) on the periodic table, a student needs to find another element with very similar chemical properti
    13·2 answers
  • The surface pressures at the bases of warm and cold columns of air are equal. air pressure in the warm column of air will ______
    11·1 answer
  • Some car manufacturers claim that their vehicles could climb a slope of 42 ∘. For this to be possible, what must be the minimum
    9·1 answer
  • Consider the specific example of a positive charge qqq moving in the +x direction with the local magnetic field in the +y direct
    12·2 answers
  • Una manguera de agua de 1.3 cm de diametro es utilizada para llenar una cubeta de 24 Litros. Si la cubeta se llena en 48 s. A) ¿
    14·1 answer
  • Shows an object suspended from two ropes. The weight of the object is 360 N. The magnitude of the tension
    11·1 answer
  • A student measured the density of Galena to be 7.9g/cm3 however the known density of Galena is 7.6g/cm3 . Calculate the percent
    15·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!