Answer:
The correct answer is option 'd': The frequency decreases and the intensity of the sound decreases.
Explanation:
1) <u>Effect on Frequency </u>
According to Doppler's effect of sound we have
for a source of sound moving away from the observer the relation between the observed and the original frequency is given by

where
c = speed of sound in air
is the velocity of observer of sound
is the velocity of source of sound
is the original frequency of sound
As we see the ratio is less than 1 thus the frequency of sound that the observer receives is less than that of source.
2) <u>Effect on Intensity:</u>
At a distance 'r' from source emitting a wave of Power 'P' is given by

As we see on increasing 'r' intensity of sound decreases.
Answer:
0.2cm towards the retina.
Explanation:
the focal length of the frog eye is
(1/f) = (1/10) + (1/0.8)
f = 0.74cm
Since the distance of the object is 15cm Hence
(1/0.74) = (1/15) + (1/V)
V = 0.78cm
Therefore the distance the retina is to move is
0.78cm - 0.8cm = 0.02cm towards the retina.
The first problem cannot be solve because you did give the distance or length of the rope, because work = distance x force. i can only solve the the second problem. since the bucket is moving up then force due to gravity is going down, then the net force is:
Fnet = F1 - Fg
where Fg = mg
g is the accelaration due to gravity ( 9.81 m/s^2)
Fnet = 57.5 N - (3.9 kg)(9.81) N
Fnet = 19.24 N
Answer:
t = 1.51 hours
Explanation:
given,
Speed of space shuttle. v = 27800 Km/h
Radius of earth, R = 6380 Km
height of shuttle above earth, h = 320 Km
Total radius of the shuttle orbit
r' = R + h
r' = 6380 + 320
r' = 6700 Km
distance, d = 2 π r
d = 2 π x 6700


t = 1.51 hours
Time require by the shuttle to circle the earth is equal to 1.51 hr.
<span>this may help you
As far as the field goes, the two charges opposite each other cancel!
So E = kQ / d² = k * Q / (d/√2)² = 2*k*Q / d² ◄
and since k = 8.99e9N·m²/C²,
E = 1.789e10N·m²/C² * Q / d² </span>