answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Bond [772]
1 year ago
7

Charge is placed on two conducting spheres that are very far apart and connected by a long thin wire. The radius of the smaller

sphere is 5 cm and that of the larger sphere is 12 cm. The electric field at the surface of the larger sphere is 358 kV/m. Find the surface charge density on each sphere.
Physics
1 answer:
kobusy [5.1K]1 year ago
8 0

Answer:

σ₁ = 3.167 * 10^{-6} C/m²

σ₂ = 7.6 * 10 ^{-6}  C/m²

Explanation:

The given data :-

i) The radius of smaller sphere ( r ) = 5 cm.

ii) The radius of larger sphere ( R ) = 12 cm.

iii) The electric field at of larger sphere  ( E₁ ) = 358 kV/m. = 358 * 1000 v/m

E_{1} = (\frac{1}{4\pi\epsilon  }) (\frac{Q_{1} }{R^{2} } )

358000 = 9 * 10^{9 } *\frac{Q_{1} }{0.12^{2} }

Q₁ = 572.8 * 10^{-9} C

Since the field inside a conductor is zero, therefore electric potential ( V ) is constant.

V = constant

∴\frac{Q_{1} }{R} = \frac{Q_{2} }{r}

Q_{2}  = \frac{r}{R} *Q_{1}

Q_{2} = \frac{5}{12} *572.8*10^{-9}   = 238.666 *10^{-9} C

Surface charge density ( σ₁ ) for large sphere.

Area ( A₁ )  = 4 * π * R²  = 4 * 3.14 * 0.12 = 0.180864 m².

σ₁  = \frac{Q_{1} }{A_{1} } = \frac{572.8 *10^{-9} }{0.180864} = 3.167 * 10^{-6}  C/m².

Surface charge density ( σ₂ ) for smaller sphere.

Area ( A₂ )  = 4 * π * r²  = 4 * 3.14 * 0.05²  =0.0314 m².

σ₂ =\frac{Q_{2} }{A_{2} } = \frac{238.66 *10^{-9} }{0.0314} = 7.6 * 10 ^{-6} C/m²

You might be interested in
A 10. g cube of copper at a temperature T1 is placed in an insulated cup containing 10. g of water at a temperature T2. If T1 &g
Anna35 [415]

Answer:

a. The temperature of the copper changed more than the temperature of the water.

Explanation:

Because we're only considering the isolated system cube-water, the heat of the system should be constant, that implies the heat the cube loses is equal the heat the water gains (because by zero law of thermodynamics heat (Q) flows from hot body to cold body until reach thermal equilibrium and T1>T2). So:

Q_{cube}=Q_{water} (1)

But Q is related with mass (m), specific heat (c) and changes in temperature (\varDelta T)in the next way:

Q=cm\varDelta T(2)

Using (2) on (1):

c_{cooper}*m_{cooper}*\varDelta T_{cooper}=c_{water}*m_{waterer}*\varDelta T_{water}

(10g)(0.385 \frac{J}{g\,C})(\varDelta T_{cooper})=(10g)(4.186 \frac{J}{g\,C})(\varDelta T_{water})

(0.385 \frac{J}{g\,C})(\varDelta T_{cooper})=(4.186 \frac{J}{g\,C})(\varDelta T_{water})

Because we have an equality and 0.385 < 4.186 then \varDelta T_{cooper}>\varDelta T_{waterer} to conserve the equality

4 0
2 years ago
The lighting needs of a storage room are being met by six fluorescent light fixtures, each fixture containing four lamps rated a
Amanda [17]

Answer:

amount of energy  = 4730.4 kWh/yr

amount of money = 520.34 per year

payback period = 0.188 year

Explanation:

given data

light fixtures = 6

lamp = 4

power = 60 W

average use = 3 h a day

price of electricity = $0.11/kWh

to find out

the amount of energy and money that will be saved and simple payback period if the purchase price of the sensor is $32 and it takes 1 h to install it at a cost of $66

solution

we find energy saving by difference in time the light were

ΔE = no of fixture × number of lamp × power of each lamp × Δt

ΔE is amount of energy save and Δt is time difference

so

ΔE = 6 × 4 × 365 ( 12 - 9 )

ΔE = 4730.4 kWh/yr

and

money saving find out by energy saving and unit cost that i s

ΔM = ΔE × Munit

ΔM = 4730.4 × 0.11

ΔM = 520.34 per year

and

payback period is calculate as

payback period = \frac{excess initial cost}{\Delta M}

payback period = \frac{32 + 66}{520.34}

payback period = 0.188 year

8 0
2 years ago
In an experiment, students roll several hoops down the same incline plane. Each hoop has the same mass but a different radius. E
insens350 [35]

Answer:

The graph should have velocity (v) on the y-axis and radius (r) on the x-axis. It will have a straight, horizontal line that goes across the graph.

Explanation:

KE=\frac{1}{2} I(omega)^{2}

Shown above is the formula for Kinetic Energy in rotational terms. I'm new to brain.ly so I couldn't insert the omega symbol, sorry about that. Omega can be replaced with \frac{v^{2} }{r^2}. Moment of Inertia (I) can be replaced with mr^2.

The equation becomes KE=\frac{1}{2} mr^2(\frac{v^2}{r^2} ) .

The r's cancel out, making the different radii negligible, causing a straight horizontal line.

5 0
1 year ago
A projectile is launched at an angle of 30° and lands 20 s later at the same height as it was launched. (a) What is the initial
Elina [12.6K]

Answer:

a)Initial speed of the projectile = 196.2 m/s

b)Maximum altitude = 490.5 m

c) Range of projectile = 3398.28 m

d) Displacement from the point of launch to the position on its trajectory at 15 s = 2575.12 m

Explanation:

Time of flight of a projectile is given by the expression,

               t=\frac{2usin\theta}{g}

           Here θ = 30° and t = 20 s

a) t=\frac{2usin\theta}{g}\\\\20=\frac{2\times usin30}{9.81}\\\\u=196.2m/s

  Initial speed of the projectile = 196.2 m/s

b) Maximum altitude is given by

                  H=\frac{u^2sin^2\theta}{2g}=\frac{196.2^2\times sin^230}{2\times 9.81}=490.5m

      Maximum altitude = 490.5 m

c) Range of projectile is given by

                              R=\frac{u^2sin2\theta}{g}=\frac{196.2^2\times sin(2\times 30)}{9.81}=3398.28m

    Range of projectile = 3398.28 m

d) Horizontal velocity = ucosθ = 196.2 x cos 30 = 169.91 m/s

   Vertical velocity = usinθ = 196.2 x sin 30 = 98.1 m/s

   We have equation of motion s = ut + 0.5 at²

   Horizontal motion

                         u = 169.91 m/s

                         a = 0 m/s²

                          t = 15 s

                Substituting

                          s = 169.91 x 15 + 0.5 x 0 x 15² = 2548.71 m

      Vertical motion

                         u = 98.1 m/s

                         a = -9.81 m/s²

                          t = 15 s

                Substituting

                          s = 98.1 x 15 + 0.5 x -9.81 x 15² = 367.88 m

   \texttt{Total displacement =}\sqrt{2548.71^2+367.88^2}=2575.12m

   Displacement from the point of launch to the position on its trajectory at 15 s = 2575.12 m

7 0
2 years ago
A certain rigid aluminum container contains a liquid at a gauge pressure of P0 = 2.02 × 105 Pa at sea level where the atmospheri
MaRussiya [10]

Answer:

dz=19217687.07\ m

Explanation:

Given:

  • initial gauge pressure in the container, P_0=2.02\times 10^{5}\ Pa
  • atmospheric pressure at sea level, P_a=1.01\times 10^5\ Pa
  • initial volume, V_0=4.4\times 10^{-4}\ m^3
  • maximum pressure difference bearable by the container, dP_{max}=2.26\times 10^{5}\ Pa
  • density of the air, \rho_a=1.2\ kg.m^{-3}
  • density of sea water, \rho_s=1.2\ kg.m^{-3}

<u>The relation between the change in pressure with height is given as:</u>

\frac{dP_{max}}{dz} =\rho_a.g_n

where:

dz = height in the atmosphere

g_n= standard value of gravity

<em>Now putting the respective values:</em>

\frac{2.26\times 10^{5}}{dz} =1.2\times 9.8

dz=19217.687\ km

dz=19217687.07\ m

Is the maximum height above the ground that the container can be lifted before bursting. (<em>Since the density of air and the density of sea water are assumed to be constant.</em>)

7 0
1 year ago
Other questions:
  • Which of the following statements about horizons is true?
    13·2 answers
  • A constant torque of 200Nm turns a wheel about its centre. The moment of inertia of it about the axis is 100kgm^s . Find the kin
    13·2 answers
  • A 1.0-c point charge is 15 m from a second point charge, and the electric force on one of them due to the other is 1.0 n. what i
    9·1 answer
  • Experimental tests have shown that hammerhead sharks can detect magnetic fields. In one such test, 100 turns of wire were wrappe
    10·1 answer
  • Determine the ratio of the flow rate through capillary tubes A and B (that is, QA/QB). The length of A is twice that of B, and t
    8·1 answer
  • Assuming that you remain a finite distance from the origin, where in the X-Y plane could a point charge Q be placed, so that thi
    5·1 answer
  • An object is moving east, and its velocity changes from 65 m/s to 25 m/s in 10 seconds. Which describes the acceleration? negati
    13·1 answer
  • POINTS + BRAINLIEST TO CORRECT ANSWER
    5·1 answer
  • An empty glass beaker has a mass of 103 g. When filled with water, it has a total mass of 361g.
    6·1 answer
  • A 1.00 kg ball traveling towards a soccer player at a velocity of 5.00 m/s rebounds off the soccer
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!