Answer:
We know that force applied per unit area is called pressure.
Pressure = Force/ Area
When force is constant than pressure is inversely proportional to area.
1- Calculating the area of three face:
A1 = 20m x 10 m =200 Square meter
A2 = 10 mx 5 m = 50 Square meter
A3 = 20m x 5 m = 100 Square meter
Therefore A1 is maximum and A2 is minimum.
2- Calculate pressure:
P = F/ A1 = 30 / 200 = 0.15 Nm⁻² ( minimum pressure)
P = F / A2 = 30 / 50 = 0.6 Nm⁻² ( maximum pressure)
Hence greater the area less will be the pressure and vice versa.
Answer:
Force applied to smaller cross section is
= 82.63 N
Explanation:
As we know

where
signifies the weight of the two chair in a hydraulic-lift system
And
signifies the area of the two respective chairs in a hydraulic-lift system
Given -
N
Square centimeter
Square centimeter
Substituting the given values in above equation, we get -

Force applied to smaller cross section is
= 82.63 N
Answer:
Pound is the product of slug and foot/square second.
Explanation:
We are given that
Force=1 N
1N=
We have to find the units comprise the pound.
Force=1 Pound
Mass=Slug
Acceleration=
Therefore,
1 pound=
Therefore, we can write as 1 pound is equal to the product of slug and ft/square second.
Hence, pound is the product of slug and foot/square second.
Answer:
Explanation:
We shall apply Pascal's Law in fluid mechanics
According to it , pressure is transmitted in liquid from one point to another without any change .
25 cm diameter = 12.5 x 10⁻² m radius
Area = 3.14 x (12.5 x 10⁻²)²
= 490.625 x 10⁻⁴ m²
Pressure by vehicle
Force / area
13000 / 490.625 x 10⁻⁴
= 26.497 x 10⁴ Pa
5 cm diameter = 2.5 x 10⁻² radius
area = 3.14 x (2.5 x 10⁻²)²
= 19.625 x 10⁻⁴ m²
If we assume required force F on this area
Pressure = F / 19.625 x 10⁻⁴ Pa
According to Pascal Law
F / 19.625 x 10⁻⁴ = 26.497 x 10⁴
F = 19.625 x 26.497
= 520 N
Answer:
The correct option is C
Explanation:
The pendulum bob would return at the same time because the initial angle a pendulum bob is dropped does not affect it's period (the time it takes for the pendulum to move back and forth), however the one with a larger angle move faster but would eventually arrive at the same "starting point" due to varying displacements made.