answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
KiRa [710]
2 years ago
14

A train composed of a small engine car and a massive cargo car are connected as they move along a track. The speed of the small

engine car is ____(blank 1)___ the speed of the massive cargo car. The magnitude of the acceleration of the small engine car is ____(blank 2)___ the magnitude of the acceleration of the massive cargo car because ____(blank 3)___ .
Physics
1 answer:
stepan [7]2 years ago
7 0

Answer:

The speed of the small engine car is <u>_equal to_</u> the speed of the massive cargo car. The magnitude of the acceleration of the small engine car is <u>_equal to_</u> the magnitude of the acceleration of the massive cargo car because <u>_the cars speeds cannot change by different amounts_</u> .

Explanation:

The two cars are connected, hence, they move with the same speed at all points in time.

You might be interested in
A 0.50 kilogram ball is held at a height of 20 meters. What is the kinetic energy of the ball when it reaches halfway after bein
Margarita [4]
Potential energy at any point is (M G H). On the way down, only H changes. So halfway down, half of the potential energy remains, and the other half has turned to kinetic energy. Half of the (M G H) it had at the tpp is (0.5 x 9.8 x 10) = 49 joules.
6 0
2 years ago
Read 2 more answers
A body is projected upward at an angle of 30 degree to the horizontal at an initial speed of 200ms-.In how many seconds will it
Crazy boy [7]

Answer:

20.41 s

3534.80 m

Explanation:

<em><u>In how many seconds will it reach the ground?</u></em>

We are given the initial velocity of the body, which is 200 m/s at a 30° angle.

We know the acceleration in the vertical direction is -9.8 m/s², assuming that the upwards/right direction is positive and the downwards/left direction is negative.

Since we are using acceleration in the y-direction, let's use the vertical component of the initial velocity.

  • 200 · sin(30) m/s

Let's use the fact that at the top of its trajectory, the body will have a final velocity of 0 m/s.

Now we have one missing variable that we are trying to solve for: time t.

Find the constant acceleration equation that contains v₀, v, a, and t.

  • v = v₀ + at

Substitute known values into the equation.

  • 0 = 200 · sin(30) + (-9.8)t
  • -200 · sin(30) = -9.8t
  • t = 10.20408163

Recall that this is only half of the body's trajectory, so we need to double the time value we found to find the total time the body is in the air.

  • 2t = 20.40816327

The body will reach the ground in 20.41 seconds.

<em><u>How far from the point of projection would it strike? </u></em>

We want to find the displacement in the x-direction for the body.

Let's find the constant acceleration equation that contains time t, that we just found, and displacement (Δx).

  • Δx = v₀t + 1/2at²

Substitute known values into the equation. Remember that we want to use the horizontal component of the initial velocity and that the acceleration in the x-direction is 0 m/s².

  • Δx = (200 · cos(30) · 20.40816327) + 1/2(0)(20.40816327)²
  • Δx = 3534.797567

The body will strike 3534.80 m from the point of projection.

4 0
1 year ago
A toy rocket engine is securely fastened to a large puck that can glide with negligible friction over a horizontal surface, take
Ad libitum [116K]

Answer:

F=(3i+3.6j)\ N

Explanation:

It is given that,

Mass of the puck, m = 4.8 kg

Initial velocity of the puck, u=(1i+0j)\ m/s

After 8 seconds, final velocity of the puck, v=(6i+6j)\ m/s

Let the x and y component of force is given by F_x\ and\ F_y.

x component of force is given by :

F_x=m\times \dfrac{v-u}{t}

F_x=4.8\times \dfrac{6-1}{8}

F_x=3\ N

y component of force is given by :

F_y=m\times \dfrac{v-u}{t}

F_y=4.8\times \dfrac{6-0}{8}

F_y=3.6\ N

So, the component of the force is F=(3i+3.6j)\ N. Hence, this is the required solution.

7 0
2 years ago
A baseball thrown at an angle of 60.0° above the horizontal strikes a building 16.0 m away at a point 8.00 m above the point fro
yanalaym [24]

Answer:

a) v_{o} =16m/s

b) v=9.8m/s

c) \beta =-35.46º

Explanation:

From the exercise we know that the ball strikes the building 16m away and its final height is 8m more than the initial

Being said that, we can calculate the initial velocity of the ball

a) First we analyze its horizontal motion

x=v_{ox}t

x=v_{o}cos(60)t

v_{o}=\frac{x}{tcos(60)}=\frac{16m}{tcos(60)} (1)

That would be our first equation

Now, we need to analyze its vertical motion

y=y_{o}+v_{oy}t+\frac{1}{2}gt^2

y_{o}+8=y_{o}+v_{o}sin(60)t-\frac{1}{2}(9.8)t^2

Knowing v_{o} in our first equation (1)

8=\frac{16}{tcos(60)}sin(60)t-\frac{1}{2}(9.8)t^2

\frac{1}{2}(9.8)t^2=16tan(60)-8

Solving for t

t=\sqrt{\frac{2(16tan(60)-8)}{9.8} } =2s

So, the ball takes to seconds to get to the other building. Now we can calculate its <u>initial velocity</u>

v_{o}=\frac{16m}{(2s)cos(60)}=16m/s

b) To find the <u>magnitude of the ball just before it strikes the building</u> we need to calculate its x and y components

v_{x}=v_{ox}+at=16cos(60)=8m/s

v_{y}=v_{oy}+gt=16sin(60)-(9.8)(2)=-5.7m/s

So, the magnitude of the velocity is:

v=\sqrt{v_{x}^{2}+v_{y}^{2}}=\sqrt{(8m/s)^2+(-5.7m/s)^2}=9.8m/s

c) The <u><em>direction of the ball</em></u> is:

\beta=tan^{-1}(\frac{v_{y} }{v_{x}})=tan^{-1}(\frac{-5.7}{8})=-35.46º

4 0
2 years ago
A 200 g hockey puck is launched up a metal ramp that is inclined at a 30° angle. The coefficients of static and kinetic friction
Vaselesa [24]

Answer:

H=1020.12m

Explanation:

From a balance of energy:

\frac{m*Vo^2}{2} -mg*H=-Ff*d   where H is the height it reached, d is the distance it traveled along the ramp and Ff = μk*N.

The relation between H and d is given by:

H = d*sin(30)   Replace this into our previous equation:

\frac{m*Vo^2}{2} -mg*d*sin(30)=-\mu_k*N*d

From a sum of forces:

N -mg*cos(30) = 0    =>  N = mg*cos(30)   Replacing this:

\frac{m*Vo^2}{2} -mg*d*sin(30)=-\mu_k*mg*cos(30)*d   Now we can solve for d:

d = 2040.23m

Thus H = 1020.12m

6 0
2 years ago
Read 2 more answers
Other questions:
  • What fraction of a piece of concrete will be submerged when it floats in mercury? the density of concrete is 2.3×103kg/m3 and de
    7·1 answer
  • Not too long ago houses were protected from excessive currents by fuses rather than circuit breakers. sometimes a fuse blew out
    9·1 answer
  • A horizontal rectangular surface has dimensions 2.80 cm by 3.20 cm and is in a uniform magnetic field that is directed at an ang
    8·1 answer
  • Subatomic particles that do not possess any charge but provide mass to atoms are called
    15·1 answer
  • A 40-kg uniform semicircular sign 1.6 m in diameter is supported by two wires as shown. What
    10·1 answer
  • A pitching machine is programmed to pitch baseballs horizontally at a speed of 87 mph . The machine is mounted on a truck and ai
    8·1 answer
  • Young athlete has a mass of 42 kg one day there is no wind shear and hundred metre race in 14.2 second a sketch graph not in ske
    10·2 answers
  • .. A 15.0-kg fish swimming at 1.10 m&gt;s suddenly gobbles up a 4.50-kg fish that is initially stationary. Ignore any drag effec
    13·1 answer
  • A toy of mass 0.190-kg is undergoing SHM on the end of a horizontal spring with force constant k = 350 N/m . When the toy is a d
    9·1 answer
  • Packages having a mass of 6 kgkg slide down a smooth chute and land horizontally with a speed of 3 m/sm/s on the surface of a co
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!