Answer:
P = ρRT/M
Explanation:
Ideal gas equation is given as follows generally:
PV = nRT (1)
P = pressure in the containing vessel
V = volume of the containing vessel
n = number of moles
R = gas constant
T = temperature in K
n = m/M
m = mass of the gas contained in the vessel in g
M = molar mass in g/mol
ρ = m/V
Density of the gas = ρ
Substituting for n in (1)
PV = mRT/M. (2)
Dividing equation (2) through by V
P = m/V ×RT/M
P = ρRT/M
Answer:
Specific gravity of other fluid = .854 (Approx)
Explanation:
Given:
Mass of water = 35 g
Mass of filled bottle with water = 98.44 g
Mass of filled bottle with fluid = 89.22 g
Computation:
Mass of water = 98.44g - 35g = 63.44g
Density of water = 1000 g/L
Volume of bottle = 63.44/1000 = 0.06344L
Mass of other liquid = 89.22g - 35g = 54.22g
Density of other liquid = 54.22g/0.06344L = 854.665826 g/L
Water has a specific gravity = 1
So , specific gravity of other fluid
1000 / 854.665826 = 1 / specific gravity of other fluid
Specific gravity of other fluid = .854 (Approx)
Answer:
The amplitude is 2.3 m
The Wavelength is 8.6 m
The frequency is 0.16 Hz
The time period is 6.25 sec
The equation that governs the behavior is ![Y=(2.3)sin[(\frac{2\pi}{8.6} )x -(\frac{2\pi}{6.2} )t]](https://tex.z-dn.net/?f=Y%3D%282.3%29sin%5B%28%5Cfrac%7B2%5Cpi%7D%7B8.6%7D%20%29x%20-%28%5Cfrac%7B2%5Cpi%7D%7B6.2%7D%20%29t%5D)
Explanation:
The explanation is shown on the first uploaded image
Answer:
630cm/s
Explanation:
In simple harmonic motion, the tangential velocity is expressed mathematically as v = ὦr
ὦ is the angular velocity = 2πf
r is the radius of the disk
f is the frequency
Given the radius of disk = 10cm
frequency = 10Hz
v = 2πfr
v = 2π×10×10
v = 200π
v = 628.32 cm/s
The tangential velocity = 630cm/s ( to 2 significant figures)