answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
vitfil [10]
2 years ago
5

A 1500-kg car locks its brakes and skids to a stop on a slippery horizontal road, leaving skid marks that are 15 m long. How muc

h mechanical energy was dissipated as this happened? The coefficient of kinetic friction between the tires and the road is 400.40un.
Physics
1 answer:
Harman [31]2 years ago
3 0

Answer:

E=88200\ J

Explanation:

Given:

  • mass of car, m=1500\ kg
  • distance of skidding after the application of brakes, d=15\ m
  • coefficient of kinetic friction, \mu_k=0.4

<u>So, the energy dissipated during the skidding of car:</u>

<em>Frictional force:</em>

f=\mu_k.N

where N = normal reaction by ground on the car

f=0.4\ties 1500\times 9.8

f=5880\ N

<em>Now from the work-energy equivalence:</em>

E=f.d

E=5880\times 15

E=88200\ J is the dissipated energy.

You might be interested in
1. A liquid of mass 250g is heated with an electric heater. Its temperature rises from 30°C to 80°C, the specific heat capacity
statuscvo [17]

Answer:

1) 50 seconds 2) 100°C

Explanation:

(Follows formula of Power=Energy/Time)

1) 500W x X = 2000J/kg°C x .25kg x 50°C

X = 50 seconds.

2) 2000W x 300s = 1000J/kg°C x 2kg x X

X = 300

Initial temperature => 400°C-300°C = 100°C

8 0
2 years ago
An object moving on the x axis with a constant acceleration increases its x coordinate by 82.9 m in a time of 2.51 s and has a v
Aneli [31]

We are given: Final velocity (v_f)=20 m/s .

Time t= 2.51 s and

distance s = 82.9 m.

We know, equation of motion

v_f = v_i + at.

Let us plug values of final velocity, and time in above equation.

20=v_i+a(2.51)

20=v_i+2.51a

Subtracting 2.51a from both sides, we get

20-2.51a=v_i  -----------equation(1)

Using another equation of motion

v_f-v_i=2as

Plugging values of vi =20-2.51a, t=2.51 and distnace s=82.9 in this equation.

We get,

20-(20-2.51a)=2*a(82.90)

Now, we need to solve it for a.

20-20+2.51a=165.8a.

-163.29a=0

a=0.

So, the acceleration would be 0 m/s^2.


5 0
2 years ago
An object has a position given by r = [2.0 m + (2.00 m/s)t] i + [3.0 m − (1.00 m/s^2)t^2] j, where quantities are in SI units. W
lidiya [134]

Answer: 1 m/s

Explanation:

We have an object whose position r is given by a vector, where the components X and Y are identified by the unit vectors i and j (where each unit vector is defined to have a magnitude of exactly one):

r=[2 m + (2 m/s) t] i + [3 m - (1 m/s^{2})t^{2}] j

On the other hand, velocity is defined as the variation of the position in time:

V=\frac{dr}{dt}

This means we have to derive r:

\frac{dr}{dt}=\frac{d}{dt}[2 m + (2 m/s) t] i + \frac{d}{dt}[3 m - (1 m/s^{2})t^{2}] j

\frac{dr}{dt}=(2 m/s) i - (\frac{1}{2} m/s^{2} t) j This is the velocity vector

And when t=2s the velocity vector is:

\frac{dr}{dt}=(2 m/s) i - (\frac{1}{2} m/s^{2} (2 s)) j

\frac{dr}{dt}=2 m/s i - 1m/s j This is the velocity vector at 2 seconds

However, the solution is not complete yet, we have to find the module of this velocity vector, which is the speed S:

S=\sqrt {-1 m/s j + 2 m/s i}

S=\sqrt {1 m/s}

Finally:

S=1 m/s This is the speed of the object at 2 seconds

6 0
2 years ago
A 250 Hz tuning fork is struck and the intensity at the source is I1 at a distance of one meter from the source. (a) What is the
Zina [86]

Answer:

a) 0.0625 I_1

b) 3.16 m

Explanation:

<u>Concepts and Principles  </u>

The intensity at a distance r from a point source that emits waves of power P is given as:  

I=P/4π*r^2                         (1)

<u>Given Data</u>

f (frequency of the tuning fork) = 250 Hz

I_1 is the intensity at the source a distance r_1 = I m from the source.  

<u>Required Data</u>

- In part (a), we are asked to determine the intensity I_2 a distance r_2 = 4 in from the source.

- In part (b), we are asked to determine the distance from the tuning fork at which the intensity is a tenth of the intensity at the source.  

<u>solution:</u>

(a)  

According to Equation (1), the intensity a distance r is inversely proportional to the distance from the source squared:

I∝1/r^2

Set the proportionality:  

I_1/I_2=(r_2/r_1)^2                                 (2)

Solve for I_2 :  

I_2=I_1(r_2/r_1)^2  

I_2=0.0625 I_1

(b)  

Solve Equation (2) for r_2:  

r_2=(√I_1/I_2)*r_1

where I_2 = (1/10)*I_1:

r_2=(√I_1/1/10*I_1)*r_1

     =3.16 m

3 0
2 years ago
The image shows positions of the earth and the moon in which region would an astronaut feel the lightest
trapecia [35]

Answer:

The moon region

Explanation:

This is because there is little to no gravity on the moon. That is where the astronaut would feel the lightest.

5 0
2 years ago
Read 2 more answers
Other questions:
  • Bonnie and clyde are sliding a 300 kg bank safe across the floor to their getaway car. the safe slides with a constant speed if
    14·1 answer
  • A swimming pool contains x (less than 0.02) grams of chlorine per cubic meter. the pool measures 5 meters by 50 meters and is 2
    5·1 answer
  • All forces on the bullets cancel so that the net force on a bullet is zero, which means the bullet has zero acceleration and is
    6·1 answer
  • An amusement park ride raises people high into the air, suspends them for a moment, and then drops them at a rate of free-fall a
    13·2 answers
  • A uniform 40-N board supports two children weighing 500 N and 350 N. If the support is at the center of the board and the 500-N
    5·1 answer
  • A shift in one fringe in the Michelson-Morley experiment corresponds to a change in the round-trip travel time along one arm of
    7·1 answer
  • José and Laurel measured the length of a stick's shadow during the day. Without knowing the length of the stick, which of their
    10·1 answer
  • What is an example of convection currents? a. marshmallows toasting over a campfire b. a pot being heated by an electric burner,
    15·2 answers
  • A boy throws a rock with an initial velocity of 2.15 m/s at 30.0° above the horizontal. If air resistance is negligible, how lon
    10·1 answer
  • An empty glass beaker has a mass of 103 g. When filled with water, it has a total mass of 361g.
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!