answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Readme [11.4K]
2 years ago
15

The minute hand of a wall clock measures 16 cm from its tip to the axis about which it rotates. The magnitude and angle of the d

isplacement vector of the tip are to be determined for three time intervals. What are the (a) magnitude and (b) angle from a quarter after the hour to half past, the (c) magnitude and (d) angle for the next half hour, and the (e) magnitude and (f) angle for the hour after that? Give all angles as positive values measured counterclockwise from the +x direction (to the right, or 3 o'clock).
Physics
1 answer:
olya-2409 [2.1K]2 years ago
7 0

Answer:

Explanation:

Given

Minute hand length =16 cm

Time at a quarter after the hour to half past i.e. 1 hr 45 min

Angle covered by minute hand in 1 hr is 360 and in 45 minutes 270

|r|=\frac{3\times 2\pi r}{4}=75.408 cm

Angle =270^{\circ}

(c)For the next half hour

Effectively it has covered 2 revolution and a quarter

|r|=\frac{2\pi r}{4}=25.136 cm

angle turned =90^{\circ}

(f)Hour after that

After an hour it again comes back to its original position thus displacement is same =25.136

Angle turned will also be same i.e. 90 ^{\circ}

You might be interested in
A 6000 kg lorry is reversing into a parking space at a speed of 0.5 m/s but collides with a car. The crumple zone of the car sto
zysi [14]

Answer:

3000 kg.m/s

Explanation:

Momentum, p is a product of mass and velocity hence

p=mv where m is mass and v is velocity.

Change in momentum is given by m(v_f-v_i) where subscripts f and i represent final and initial respectively. Since the lorry finally comes to rest then the final velocity is zero. Substituting the given figures then

Change in momentum= 6000(0-0.5)=-3000 kg.m/s

7 0
2 years ago
A disk is spinning about its center with a constant angular speed at first. Let the turntable spin faster and faster, with const
hoa [83]

Answer:

4 (please see the attached file)

Explanation:

While the angular speed (counterclockwise) remained constant, the angular acceleration was just zero.

So, the only force acting on the bug (parallel to the surface) was the centripetal force, producing a centripetal acceleration directed towards the center of the disk.

When the turntable started to spin faster and faster, this caused a change in the angular speed, represented by the appearance of an angular acceleration α.

This acceleration is related with the tangential acceleration, by this expression:

at = α*r

This acceleration, tangent to the disk (aiming in the same direction of the movement, which is counterclockwise, as showed in the pictures) adds vectorially with the centripetal force, giving a resultant like the one showed in the sketch Nº 4.

7 0
1 year ago
Your friend Amanda suffers from a condition that reduces her blood's ability to carry oxygen.which of the following is the name
Anestetic [448]
Amanda might be suffering from a disease called Sickle Cell Anemia. It is an inherited red blood cell disorder.
7 0
2 years ago
You drop your keys in a high-speed elevator going up at a constant speed. Part APart complete Do the keys accelerate faster towa
anzhelika [568]

Answer:

Explained

Explanation:

a) No, the keys were initially moving upward in the elevator only effects the initial velocity of the key and not the rate of change of velocity that is acceleration. So, the keys accelerate with the same acceleration as before.

b)Yes, keys will accelerate towards the floor faster if it is a constant speed than it is moving downward because if the elevator is accelerating downward, the downward change in velocity of the keys is at least partially matched by a downward change in the velocity of the of the elevator.

5 0
2 years ago
A) The current theory of the structure of the Earth, called plate tectonics, tells us that the continents are in constant motion
suter [353]

A) The mass of the continent is 2.5\cdot 10^{21} kg

B) The kinetic energy is 2016 J

C) The speed of the jogger should be 7.1 m/s

Explanation:

A)

The mass of the continent can be calculated as

m = \rho V

where

\rho = 2800 kg/m^3 is its density

V is its volume

We have to calculate its volume. We know that the continent is represented as a slab of side 5900 km (so its surface is 5900 x 5900, assuming it is a square) and depth of 26 km, so its volume is:

V=(5900 km)^2 (26 km)=9.05\cdot 10^8 km^3 =9.05 \cdot 10^8 \cdot (10^9 m^3/k^3)=9.05\cdot 10^7 m^3

So, the mass of the continent is

m=\rho V = (2800)(9.05\cdot 10^{17})=2.5\cdot 10^{21} kg

B)

The kinetic energy of a body is given by

K=\frac{1}{2}mv^2

where

m is the mass of the body

v is its speed

For the continent, we have:

m=2.5\cdot 10^{21} kg is the mass

v=4 cm/year is the speed

We have to convert the speed into SI units. we have:

1 cm = 0.01 m

1 year = (365)(24)(60)(60) s = 3.15\cdot 10^7 s

So, the speed is

v=4 cm/year = 0.04 m/year \cdot \frac{1}{3.15\cdot 10^7}=1.27\cdot 10^{-9} m/s

Therefore, the kinetic energy is

K=\frac{1}{2}(2.5\cdot 10^{21} kg)(1.27\cdot 10^{-9} m/s)^2=2016 J

C)

Again, the kinetic energy of an object is

K=\frac{1}{2}mv^2

For the jogger in this problem, his mass is

m = 80 kg

And we want its kinetic energy to be equal to that of the continent, so

K = 2016 J

Re-arranging the equation for v, we find what speed the jogger needs to have this kinetic energy:

v=\sqrt{\frac{2K}{m}}=\sqrt{\frac{2(2016)}{80}}=7.1 m/s

Learn more about kinetic energy here:

brainly.com/question/6536722

#LearnwithBrainly

8 0
1 year ago
Other questions:
  • What properties of sound determine the volume of sound? Is this affected by the motion of the sound source?
    11·1 answer
  • The heat capacity of an object depends in part on its ____.
    6·1 answer
  • Brass is an alloy made from copper and zinc a 0.59 kg brass sample at 98.0 is dropped into 2.80 kg of water at 5.0 c if the equi
    14·2 answers
  • A tennis ball is dropped from 1.20 m above the ground. It rebounds to a height of 1.00 m. (a) with what velocity does it hit the
    7·1 answer
  • A 1000-kg car is slowly picking up speed as it goes around a horizontal curve whose radius is 100 m. The coefficient of static f
    13·2 answers
  • A yo-yo can be thought of as a solid cylinder of mass m and radius r that has a light string wrapped around its circumference (s
    10·1 answer
  • Find the average force exerted by the bat on the ball if the two are in contact for 0.00129 s. Answer in units of N.
    10·1 answer
  • How do Leeuwenhoek’s observations of animalcules compare to Hooke’s observations of cells in the cork?
    9·1 answer
  • Pulling out of a dive, the pilot of an airplane guides his plane into a vertical circle with a radius of 600 m. At the bottom of
    7·1 answer
  • Katie rolls a toy car off the end of a table.
    5·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!