answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Andru [333]
1 year ago
5

Look at these two sentences about Undeposited Funds.1. By posting to Undeposited Funds, you can create a single bank deposit for

multiple payments, making it easy ___________. 2. When receiving a payment, make sure _________________.
Physics
1 answer:
antiseptic1488 [7]1 year ago
4 0

The question with the complete options:

Look at these two sentences about Undeposited Funds. 1. By posting to Undeposited Funds, you can create a single bank deposit for multiple payments, making it easy ___________. 2. When receiving a payment, make sure _________________. Which of the options below correctly fills in the blanks? A.)1. To match your bank register with your bank statement; 2. the Deposit to account is Undeposited Funds

B) 1. To match your bank register with your bank statement; 2. the Deposit to account is Checking

C)1. To match your expenses with your bank statement; 2. the Deposit to account is Uncategorized asset

D)1. To match your bank register with your bank statement; 2. the Deposit to account is Uncategorized funds.

Answer: The correct option is A (1. To match your bank register with your bank statement; 2. the Deposit to account is Undeposited Funds)

Explanation: Undeposited funds is a type of account created to keep funds that are not yet deposited in the individuals account. It's a default account which is used by online marketers to keep funds until they are ready to be paid.

By posting to Undeposited Funds, you can create a single bank deposit for multiple payments, making it easy to match your bank register with your bank statement. When receiving a payment, make sure the Deposit to account is Undeposited Funds.

.

You might be interested in
A nonuniform, but spherically symmetric, distribution of charge has a charge density ρ(r) given as follows:
Nikitich [7]

Answer:

r ≥ R, E = Q / (4πR²ε₀)

r ≤ R, E = 12Q (⅓ (r/R)³ − ¼ (r/R)⁴) / (4πr²ε₀)

Maximum at r = ⅔ R

Maximum field of E = Q / (3πε₀R²)

Explanation:

Gauss's law states:

∮E·dA = Q/ε₀

What that means is, if you have electric field vectors E passing through areas dA, the sum of those E vector components perpendicular to the dA areas is equal to the total charge Q divided by the permittivity of space, ε₀.

a) r ≥ R

Here, we're looking at the charge contained by the entire sphere.  The surface area of the sphere is 4πR², and the charge it contains is Q.  Therefore:

E(4πR²) = Q/ε₀

E = Q / (4πR²ε₀)

b) r ≤ R

This time, we're looking at the charge contained by part of the sphere.

Imagine the sphere is actually an infinite number of shells, like Russian nesting dolls.  For any shell of radius r, the charge it contains is:

dq = ρ dV

dq = ρ (4πr²) dr

The total charge contained by the shells from 0 to r is:

q = ∫ dq

q = ∫₀ʳ ρ (4πr²) dr

q = ∫₀ʳ ρ₀ (1 − r/R) (4πr²) dr

q = 4πρ₀ ∫₀ʳ (1 − r/R) (r²) dr

q = 4πρ₀ ∫₀ʳ (r² − r³/R) dr

q = 4πρ₀ (⅓ r³ − ¼ r⁴/R) |₀ʳ

q = 4πρ₀ (⅓ r³ − ¼ r⁴/R)

Since ρ₀ = 3Q/(πR³):

q = 4π (3Q/(πR³)) (⅓ r³ − ¼ r⁴/R)

q = 12Q (⅓ (r/R)³ − ¼ (r/R)⁴)

Therefore:

E(4πr²) = 12Q (⅓ (r/R)³ − ¼ (r/R)⁴) / ε₀

E = 12Q (⅓ (r/R)³ − ¼ (r/R)⁴) / (4πr²ε₀)

When E is a maximum, dE/dr is 0.

First, simplify E:

E = 12Q (⅓ (r/R)³ − ¼ (r/R)⁴) / (4πr²ε₀)

E = Q (4 (r³/R³) − 3 (r⁴/R⁴)) / (4πr²ε₀)

E = Q (4 (r/R³) − 3 (r²/R⁴)) / (4πε₀)

Take derivative and set to 0:

dE/dr = Q (4/R³ − 6r/R⁴) / (4πε₀)

0 = Q (4/R³ − 6r/R⁴) / (4πε₀)

0 = 4/R³ − 6r/R⁴

0 = 4R − 6r

r = ⅔R

Evaluating E at r = ⅔R:

E = Q (4 (⅔R / R³) − 3 (⁴/₉R² / R⁴)) / (4πε₀)

E = Q (8 / (3R²) − 4 / (3R²)) / (4πε₀)

E = Q (4 / (3R²)) / (4πε₀)

E = Q (1 / (3R²)) / (πε₀)

E = Q / (3πε₀R²)

3 0
1 year ago
A package is dropped from a helicopter that is descending steadily at a speed v0. After t seconds have elapsed, consider the fol
qaws [65]

Answer:

Part a)

v = \sqrt{v_o^2 + g^2t^2}

Part b)

d = \frac{1}{2}gt^2

Part c)

v_f = v_o - gt

Part d)

d = \frac{1}{2}gt^2

Explanation:

Part a)

As we know that speed of package is same as that of helicopter in horizontal direction

So after time "t" the velocity in x direction will remain constant while in Y direction it will go free fall

So we have

v_y = -gt

v = \sqrt{v_x^2 + v_y^2}

v = \sqrt{v_o^2 + g^2t^2}

Part b)

Distance from helicopter is same as the distance of free fall

so we will have

d = \frac{1}{2}gt^2

Part c)

If helicopter is rising upwards with uniform speed

then final speed of the package after time t is given as

v_f = v_i + at

v_f = v_o - gt

Part d)

distance from helicopter

d = \frac{1}{2}gt^2

8 0
2 years ago
Read 2 more answers
A 450g mass on a spring is oscillating at 1.2Hz. The totalenergy of the oscillation is 0.51J. What is the amplitude.
Volgvan

Answer:

A=0.199

Explanation:

We are given that  

Mass of spring=m=450 g==\frac{450}{1000}=0.45 kg

Where 1 kg=1000 g

Frequency of oscillation=\nu=1.2Hz

Total energy of the oscillation=0.51 J

We have to find the amplitude of oscillations.

Energy of oscillator=E=\frac{1}{2}m\omega^2A^2

Where \omega=2\pi\nu=Angular frequency

A=Amplitude

\pi=\frac{22}{7}

Using the formula

0.51=\frac{1}{2}\times 0.45(2\times \frac{22}{7}\times 1.2)^2A^2

A^2=\frac{2\times 0.51}{0.45\times (2\times \frac{22}{7}\times 1.2)^2}=0.0398

A=\sqrt{0.0398}=0.199

Hence, the amplitude of oscillation=A=0.199

4 0
1 year ago
A boy and a girl are riding a merry-go-round which is turning at a constant rate. the boy is near the outer edge, while the girl
scZoUnD [109]
I think that the girl has greater tangential acceleration because she is closer to the center and the acceleration is greater there. 
7 0
1 year ago
Read 2 more answers
Derive an algebraic equation for the vertical force that the bench exerts on the book at the lowest point of the circular path i
fiasKO [112]

Answer:

The algebraic equation is:

F_{v} =\frac{m_{b}v_{b}^{2}   }{R} -m_{b} g

Explanation:

Given information:

mb = book's mass

vb = tangential speed

R = radius of the path

Question: Derive an algebraic equation for the vertical force, Fv = ?

To derive the equation, we need to draw a force diagram for this case, please, see the attached diagram. As you can see, there are three types of forces acting on the system. Two up and one of the weight acting down. Therefore, the algebraic equation is as follows:

F_{v} =\frac{m_{b}v_{b}^{2}   }{R} -m_{b} g

The variables were defined above and g is the gravity.

4 0
2 years ago
Other questions:
  • The Hoover Dam produces electricity which powers parts of Nevada and California. It is made up of 17 generators, each of which p
    12·2 answers
  • A 4.00 kg rock is rolling 10.0 m/s find its kinetic energy
    14·1 answer
  • Person X pushes twice as hard against a stationary brick wall as person Y. Which one of the following statements is correct?
    14·1 answer
  • A cartridge electrical heater is shaped as a cylinder of length L = 200 mm and outer diameter D = 20 mm. Under normal operating
    10·1 answer
  • Describe the distribution of wdiff in terms of its center, shape, and spread, including any plots you use
    6·1 answer
  • Dante uses 14 J of work to lift a weight for 30 seconds. How much power did he use?
    14·1 answer
  • The circuit below represents four resistors connected to a 12-volt source. What is the total current in the circuit? 4.0Ω 6.0Ω 1
    11·2 answers
  • A beam of electrons is accelerated from rest through a potential difference of 0.200 kV and then passes through a thin slit. Whe
    13·1 answer
  • Ellen does an experiment by releasing a ball from a height of 1 m above each floor in a tall building. She records the time it t
    8·2 answers
  • Which statement accurately describes the motion of the object in the graph above over 10 seconds? Group of answer choices The ob
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!