Answer:
d = 380 feet
Explanation:
Height of man = perpendicular= 130 feet
Angle of depression = ∅ = 70 °
distance to bus stop from man = hypotenuse = d = 130 sec∅
As sec ∅ = 1 / cos∅
so d = 130 sec∅ or d = 130 / cos∅
d = 130 / cos(70°)
d = 380 feet
I attached the missing picture.
We can figure this one out using the law of conservation of energy.
At point A the car would have potential energy and kinetic energy.

Then, while the car is traveling down the track it loses some of its initial energy due to friction:

So, we know that the car is approaching the point B with the following amount of energy:

The law of conservation of energy tells us that this energy must the same as the energy at point B.
The energy at point B is the sum of car's kinetic and potential energy:

As said before this energy must be the same as the energy of a car approaching the loop:

Now we solve the equation for

:
Answer:
T = 0.03 Nm.
Explanation:
d = 1.5 in = 0.04 m
r = d/2 = 0.02 m
P = 56 kips = 56 x 6.89 = 386.11 MPa
σ = 42-ksi = 42 x 6.89 = 289.58 MPa
Torque = T =?
<u>Solution:</u>
σ = (P x r) / T
T = (P x r) / σ
T = (386.11 x 0.02) / 289.58
T = 0.03 Nm.
Answer:
88.3
Explanation:
Emf in a rotating coil is given by rate of change of flux:
E= dФ/dt=(NABcos∅)/ dt
N: number of turns in the coil= 80
A: area of the coil= 0.25×0.40= 0.1
B: magnetic field strength= 1.1
Ф: angle of rotation= 90- 37= 53
dt= 0.06s
E= (80 × 0.4× 0.25×1.10 × cos53)/0.06= 88.3V
Answer:
b = 0.6487 kg / s
Explanation:
In an oscillatory motion, friction is proportional to speed,
fr = - b v
where b is the coefficient of friction
when solving the equation the angular velocity has the form
w² = k / m - (b / 2m)²
In this exercise we are given the angular velocity w = 1Hz, the mass of the body m = 0.1 kg, and the spring constant k = 5 N / m. Therefore we can disperse the coefficient of friction
let's call
w₀² = k / m
w² = w₀² - b² / 4m²
b² = (w₀² -w²) 4 m²
Let's find the angular velocities
w₀² = 5 / 0.1
w₀² = 50
w = 2π f
w = 2π 1
w = 6.2832 rad / s
we subtitute
b² = (50 - 6.2832²) 4 0.1²
b = √ 0.42086
b = 0.6487 kg / s