answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
vovangra [49]
1 year ago
14

Person X pushes twice as hard against a stationary brick wall as person Y. Which one of the following statements is correct?

Physics
1 answer:
Mrac [35]1 year ago
6 0

Answer:

D) Both do zero work

Explanation:

The work done by a force is given by:

W=Fd cos \theta

where

F is the force applied

d is the displacement

\theta is the angle between the direction of the force and the displacement

From the formula, we notice that work is done online when the displacement is non-zero, so when the object is moving.

In this problem, the wall is stationary: this means that the displacement is zero, d = 0, so no work is done.

You might be interested in
A man stands on his balcony, 130 feet above the ground. He looks at the ground, with his sight line forming an angle of 70° with
jenyasd209 [6]

Answer:

d =  380 feet

Explanation:

Height of man = perpendicular= 130 feet

Angle of depression = ∅ = 70 °

distance to bus stop from man = hypotenuse = d = 130 sec∅

As sec ∅ = 1 / cos∅

so d = 130 sec∅    or d = 130 / cos∅

d = 130 / cos(70°)

d =  380 feet

8 0
2 years ago
You are riding on a roller coaster that starts from rest at a height of 25.0 m and moves along a frictionless track. however, af
djyliett [7]
I attached the missing picture.
We can figure this one out using the law of conservation of energy.
At point A the car would have potential energy and kinetic energy.
A: mgh_1+\frac{mv_1^2}{2}
Then, while the car is traveling down the track it loses some of its initial energy due to friction:
W_f=F_f\cdot L
So, we know that the car is approaching the point B with the following amount of energy:
mgh_1+\frac{mv_1^2}{2}- F_fL
The law of conservation of energy tells us that this energy must the same as the energy at point B. 
The energy at point B is the sum of car's kinetic and potential energy:
B: mgh_2+\frac{mv_2}{2}
As said before this energy must be the same as the energy of a car approaching the loop:
mgh_2+\frac{mv_2}{2}=mgh_1+\frac{mv_1^2}{2}- F_fL
Now we solve the equation for v_1:
v_1^2=2g(h_2-h_1)+v_2^2+\frac{2F_fL}{m}\\
v_1^2=39.23\\
v_1=\sqrt{39.23}=6.26\frac{m}{s}

4 0
1 year ago
Read 2 more answers
The 1.5-in.-diameter shaft AB is made of a grade of steel with a 42-ksi tensile yield stress. Using the maximum-shearing-stress
PolarNik [594]

Answer:

T = 0.03 Nm.

Explanation:

d = 1.5 in = 0.04 m

r = d/2 = 0.02 m

P = 56 kips = 56 x 6.89 = 386.11 MPa

σ = 42-ksi = 42 x 6.89 = 289.58 MPa

Torque = T =?

<u>Solution:</u>

σ = (P x r) / T

T = (P x r) / σ

T = (386.11 x 0.02) / 289.58

T = 0.03 Nm.

7 0
2 years ago
A closely wound rectangular coil of 80 turns has dimensions 25.0 \rm cm by 40.0 \rm cm. The plane of the coil is rotated from a
Pepsi [2]

Answer:

88.3

Explanation:

Emf in a rotating coil is given by rate of change of flux:

E= dФ/dt=(NABcos∅)/ dt

N: number of turns in the coil= 80

A: area of the coil= 0.25×0.40= 0.1

B: magnetic field strength= 1.1

Ф: angle of rotation= 90- 37= 53

dt= 0.06s

E= (80 × 0.4× 0.25×1.10 × cos53)/0.06= 88.3V

4 0
1 year ago
Read 2 more answers
Exercise 2.4.6: Suppose you wish to measure the friction a mass of 0.1 kg experiences as it slides along a floor (you wish to fi
JulijaS [17]

Answer:

  b = 0.6487 kg / s

Explanation:

In an oscillatory motion, friction is proportional to speed,

               fr = - b v

where b is the coefficient of friction

when solving the equation the angular velocity has the form

               w² = k / m - (b / 2m)²

In this exercise we are given the angular velocity w = 1Hz, the mass of the body m = 0.1 kg, and the spring constant k = 5 N / m. Therefore we can disperse the coefficient of friction

             

let's call

               w₀² = k / m

               w² = w₀² - b² / 4m²

               b² = (w₀² -w²) 4 m²

Let's find the angular velocities

             w₀² = 5 / 0.1

             w₀² = 50

             w = 2π f

             w = 2π 1

             w = 6.2832 rad / s

we subtitute

               b² = (50 - 6.2832²) 4 0.1²

               b = √ 0.42086

                b = 0.6487 kg / s

8 0
1 year ago
Other questions:
  • What body in the solar system do you think is one focus of the moons orbit
    13·2 answers
  • Explain why is not advisable to use small values of I in performing an experiment on refraction through a glass prism?
    14·2 answers
  • A plane flying horizontally above earth’s surface at 100. meters per second drops a crate. the crate strikes the ground 30.0 sec
    9·1 answer
  • An apple falls from an apple tree growing on a 20° slope. The apple hits the ground with an impact velocity of 16.2 m/s straight
    12·1 answer
  • A brick is resting on a rough incline as shown in the figure. The friction force acting on the brick, along the incline, is
    9·2 answers
  • Irina finds an unlabeled box of fine needles, and wants to determine how thick they are. A standard ruler will not do the job, a
    9·1 answer
  • While working on her science fair project Venus connected a battery to a circuit that contained a light bulb. Venus decided to c
    8·1 answer
  • Dane is standing on the moon holding an 8 kilogram brick 2 metres above the ground. How much energy is in the brick's gravitatio
    14·2 answers
  • you are hiking along a river and see a tall tree on thhe opposite bank. You measure the angle of elevation of the top of the tre
    11·1 answer
  • Suppose the coefficient of static friction between the road and the tires on a car is 0.683 and the car has no negative lift. Wh
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!