The answer is reverse faults.
Decomposing the vector b on the x-axis and the y-axis, we get a rectangle triangle where the two sides are bx (x-axis) and by (y-axis), and b is the hypothenuse.
The component in x, bx, is equal to the product between the hypothenuse and the cosine of the angle between b and the x-axis, which is

:
Answer:
from the above analysis we can say that the angular velocity in the later case is more than that of the former case. This means that the number of rotation made in the truck case is more than that made in pike position.
Explanation:
This can be explained on the basis of conservation of angular momentum.
This means the initial and the final angular velocity is conserved. Consider initial position (1)in the pike and final position in the be truck position. So there inertia's will also be different.
⇒

also,


since, 

therefore,

So, from the above analysis we can say that the angular velocity in the later case is more than that of the former case. This means that the number of rotation made in the truck case is more than that made in pike position.
To
solve this problem, we assume that the wavelength of the light in air is 500
nanometers.
For this case we
only need the refractive index of the polystyrene. For an antireflective
coating, we need a quarter of wave thickness at the wavelength in the air. Which
means that the antireflective coating needs to be as thick as 1/4 of the
wavelength, divided by the coating’s refractive index. This is expressed
mathematically in the form:
x = λ / (4 * n)
where,
x = thickness
λ = wavelength
of light
n = index of
refraction of polystyrene
Substituting:
x = 500 nm / (4
* 1.49)
x = 500 nm / 5.96
x = 83.90 nm
Answer:
Moment of inertia of Earth about its own axis is given as

Explanation:
Since Earth is considered as solid sphere
So we will have

so we will have

so we have
