Answer:
a) W=2.425kJ
b) 
c) 
d) Q=-2.425kJ
Explanation:
a)
First of all, we need to do a drawing of what the system looks like, this will help us visualize the problem better and take the best possible approach. (see attached picture)
The problem states that this will be an ideal system. This is, there will be no friction loss and all the work done by the object is transferred to the water. Therefore, we need to calculate the work done by the object when falling those 10m. Work done is calculated by using the following formula:

Where:
W=work done [J]
F= force applied [N]
d= distance [m]
In this case since it will be a vertical movement, the force is calculated like this:
F=mg
and the distance will be the height
d=h
so the formula gets the following shape:

so now e can substitute:

which yields:
W=2.425kJ
b) Since all the work is tansferred to the water, then the increase in internal energy will be the same as the work done by the object, so:

c) In order to find the final temperature of the water after all the energy has been transferred we can make use of the following formula:

Where:
Q= heat transferred
m=mass
=specific heat
= Final temperature.
= initial temperature.
So we can solve the forula for the final temperature so we get:

So now we can substitute the data we know:

Which yields:

d)
For part d, we know that the amount of heat to be removed for the water to reach its original temperature is the same amount of energy you inputed with the difference that since the energy is being removed this means that it will be negative.

D:the electrons from being attracted to the grid instead of the anode
Answer:
0.69444 m, 0.08152 m, 0.32407 m, 0.03804 m
Explanation:
v = Velocity of sound
f = Frequency
Length of vocal tract is given by

At f = 270 Hz v = 750 m/s

At f = 2300 Hz v = 750 m/s

At f = 270 Hz v = 350 m/s

At f = 2300 Hz v = 350 m/s

Answer:
1) 64.2 mi/h
2) 3.31 seconds
3) 47.5 m
4) 5.26 seconds
Explanation:
t = Time taken = 2.5 s
u = Initial velocity = 0 m/s
v = Final velocity = 21.7 m/s
s = Displacement
a = Acceleration
1) Top speed = 28.7 m/s
1 mile = 1609.344 m

1 hour = 60×60 seconds


Top speed of the cheetah is 64.2 mi/h
Equation of motion

Acceleration of the cheetah is 8.68 m/s²
2)

It takes a cheetah 3.31 seconds to reach its top speed.
3)

It travels 47.5 m in that time
4) When s = 120 m

The time it takes the cheetah to reach a rabbit is 120 m is 5.26 seconds
Answer:
Force plane exert on pilot = 4270 N
Explanation:
first convert radius and speed to ms
using formula from force we know that
mass = weight/ gravity = 700 N/ 9.8N/kg= 71.4 kg
Fc= N-mg
N= Fc+ mg As Fc = mv²/R
N= mv²/R + mg
taking m common
N= m( v²/R +g)
= 71.4( (200)²/ 800 + 9.8 )
Force = 4270 N