answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
skad [1K]
2 years ago
15

A chair of mass 12.0 kg is sitting on the horizontal floor; the floor is not frictionless. You push on the chair with a force F

= 40.0 N that is directed at an angle of 37.0∘ below the horizontal, and the chair slides along the floor. (a) Draw a clearly labeled free-body diagram for the chair. (b) Use your diagram and Newton’s laws to calculate the normal force that the floor exerts on the chair.

Physics
1 answer:
Tanya [424]2 years ago
3 0

Answer: Normal force, N = 141.64 Newton

Explanation:

All the forces acting on the system and described in free body diagram  are:

1) gravitational pull in downward direction  

2) Normal force in upward direction

3) External force of 40 N acting at an angle of 37° with the horizontal can be resolved in two rectangular components:

  i) F Cos 37° along the horizontal plane  in forward direction and

  ii) F Sin 37° along the vertical plane in downward direction

Applying the Newton's second law, net forces in the vertical plane are:

Net force, f = N - (mg + F Sin 37°)

As there is no acceleration in the vertical plane hence, net force f = 0.

So,

N - (mg + F Sin 37°) = 0

Adding (mg + F Sin 37°) both the sides in above equation, we get

N = mg + F Sin 37°

N = 12 \times 9.8 + 40 \times 0.601      because (Sin 37° = 0.601)

N = 117.6 + 24.04

N = 141.64 Newton

You might be interested in
In coordinates with the origin at the barn door, the cow walks from x 0 to x 6.9 m as you apply a force with x component Fx 320.
Stella [2.4K]

Answer:

-209.42J

Explanation:

Here is the complete question.

A balky cow is leaving the barn as you try harder and harder to push her back in. In coordinates with the origin at the barn door, the cow walks from x = 0 to x = 6.9 m as you apply a force with x-component Fx=−[20.0N+(3.0N/m)x]. How much work does the force you apply do on the cow during this displacement?

Solution

The work done by a force W = ∫Fdx since our force is variable.

Since the cow moves from x₁ = 0 m to x₂ = 6.9 m and F = Fx =−[20.0N+(3.0N/m)x] the force applied on the cow.

So, the workdone by the force on the cow is  

W = ∫₀⁶°⁹Fx dx = ∫₀⁶°⁹−[20.0N+(3.0N/m)x] dx

= ∫₀⁶°⁹−[20.0Ndx - ∫₀⁶°⁹(3.0N/m)x] dx

= −[20.0x]₀⁶°⁹ - [3.0x²/2]₀⁶°⁹

= -[20 × 6.9 - 20 × 0] - [3.0 × 6.9²/2 - 3.0 × 0²/2]

= -[138 - 0] - [71.415 - 0] J = (-138 - 71.415) J

= -209.415 J ≅ -209.42J

5 0
2 years ago
A small glass bead charged to 5.0 nCnC is in the plane that bisects a thin, uniformly charged, 10-cmcm-long glass rod and is 4.0
GuDViN [60]

Answer:

The total charge on the rod is 47.8 nC.

Explanation:

Given that,

Charge = 5.0 nC

Length of glass rod= 10 cm

Force = 840 μN

Distance = 4.0 cm

The electric field intensity due to a uniformly charged rod of length L at a distance x on its perpendicular bisector

We need to calculate the electric field

Using formula of electric field intensity

E=\dfrac{kQ}{x\sqrt{(\dfrac{L}{2})^2+x^2}}

Where, Q = charge on the rod

The force is on the charged bead of charge q placed in the electric field of field strength E

Using formula of force

F=qE

Put the value into the formula

F=q\times\dfrac{kQ}{x\sqrt{(\dfrac{L}{2})^2+x^2}}

We need to calculate the total charge on the rod

Q=\dfrac{Fx\sqrt{(\dfrac{L}{2})^2+x^2}}{kq}

Put the value into the formula

Q=\dfrac{840\times10^{-6}\times4.0\times10^{-2}\sqrt{(\dfrac{10.0\times10^{-2}}{2})^2+(4.0\times10^{-2})^2}}{9\times10^{9}\times5.0\times10^{-9}}

Q=47.8\times10^{-9}\ C

Q=47.8\ nC

Hence, The total charge on the rod is 47.8 nC.

6 0
2 years ago
A stranded soldier shoots a signal flare into the air to attract the attention of a nearby plane. The flare has an initial verti
Ipatiy [6.2K]

Answer:

Explanation:

h = ut - 16 t² = ut - 1/2 x32 t² = ut - 1/2 g t² , g = acceleration  = - 32 ft / s²

1) v² = u² - 2 g h , v = 0 so

h = u² / 2g = 1500² / 2 x 32 = 35156.25 ft

2) v = u - gt

t = u / g = 1500 / 32 = 46.875 s

3) It will hit the ground after 2 x 46.875 = 93.75 s

4 ) time to reach 30000 ft height  t is given by

h = ut - 16 t²

30000 = 1500t - 16t²

16t²-1500t + 30000 = 0

t = 28.92 s  and 64.82 s

Time required to travel 50000 by plane

= 50000/880 = 56.82 . There is no match of timing so plane will not hit it.

8 0
2 years ago
What do energy advisors mean by the phrase "the greenest kilowatt is the one you never use?"
d1i1m1o1n [39]

Answer:

"Energy deficiency, no coal-burning, no-cost mining pollution" is the correct answer.

Explanation:

  • “The greenest kilowatt-hour seems to be the one this really doesn't should use,” explained Joe Stepenovitch, co-owner as well as COO of something like the electricity IQ Group. Whether a kilowatt becomes generated is far less essential instead of not needing to do something with it.
  • It, therefore, reduces operational costs, appeals to progressives and green-conscious consumers, prepares the business for impending emissions reductions policy caps, as well as coincides with you including an imminent future focused on renewable energy sources.

4 0
1 year ago
A seaplane flies horizontally over the ocean at 50 meters/second. It releases a buoy, which lands after 21 seconds. What's the v
pantera1 [17]
The motion of the buoy consists of two independent motions on the horizontal and vertical axis.

On the horizontal axis, the motion of the buoy is a uniform motion with constant speed v=50 m/s. On the vertical axis, the motion of the buoy is a uniformly accelerated motion with constant acceleration g=9.81 m/s^2. The vertical position of the buoy at time t is given by
y(t)=h- \frac{1}{2}gt^2
where h is the initial heigth of the buoy when it is released from the plane. At the time t=21 s, the buoy reaches the ground, so y(21 s)=0. If we substitute these two numbers inside the equation, we can find the value of h, the vertical displacement from the plane to the ocean:
0=h- \frac{1}{2}gt^2
h= \frac{1}{2}gt^2= \frac{1}{2}(9.81 m/s^2)(21 s)^2=2163 m
8 0
2 years ago
Other questions:
  • What is the risk when a pwc passes too closely behind another boat?
    12·1 answer
  • José is pinned against the walls of the Rotor, a ride with a radius of 3.00 meters that spins so fast that the floor can be remo
    6·1 answer
  • Suppose the gas resulting from the sublimation of 1.00 g carbon dioxide is collected over water at 25.0◦c into a 1.00 l containe
    7·1 answer
  • Which one of the following devices converts radioactive emissions to light for detection?
    8·1 answer
  • A bucket of mass M (when empty) initially at rest and containing a mass of water is being pulled up a well by a rope exerting a
    5·1 answer
  • (8%) Problem 9: Helium is a very important element for both industrial and research applications. In its gas form it can be used
    8·1 answer
  • Certain meteorites have been examined and found to carry samples of which molecules?
    14·1 answer
  • Two flywheels of negligible mass and different radii are bonded together and rotate about a common axis (see below). The smaller
    5·1 answer
  • If an irregularly shaped object (such as a wrench) is dropped from rest in a classroom and feels no air resistance, it will:
    6·1 answer
  • A water-skier with weight Fg = mg moves to the right with acceleration a. A horizontal tension force T is exerted on the skier b
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!