Answer:
W = 506.75 N
Explanation:
tension = 2300 N
Rider is towed at a constant speed means there no net force acting on the rider.
hence taking all the horizontal force and vertical force in consideration.
net horizontal force:
F cos 30° - T cos 19° = 0
F cos 30° = 2300 × cos 19°
F = 2511.12 N
net vertical force:
F sin 30° - T sin 19°- W = 0
W = F sin 30° - T sin 19°
W = 2511.12 sin 30° - 2300 sin 19°
W = 506.75 N
Answer:
To calculate the age of a piece of bone
Explanation:
Carbon 14 is an isotope of carbon that is unstable and decays into Nitrogen 14 by emitting an electron. The decay rate of radioactive material is normally expressed in terms of its "half-life" (the time required by half the radioactive nuclei of a sample to undergo radioactive decay). The nice thing about carbon 14 is that its "half-life" is about 5730 years, which gives a nice reference to measure the age of fossils that are some thousand years old.
Carbon 14 dating is used to determine the age of objects that have been living organisms long ago. They measure how much carbon 14 is left in the object after years of decaying without having exchange with the ambient via respiration, ingestion, absorption, etc. and therefore having renewed the normal amount of carbon 14 that is in the ambient.
A rock is not a living organism, so its age cannot be determined by carbon 14 dating.
There are some missing data in the text of the problem. I've found them online:
a) coefficient of friction dry steel piston - steel cilinder: 0.3
b) coefficient of friction with oil in between the surfaces: 0.03
Solution:
a) The force F applied by the person (300 N) must be at least equal to the frictional force, given by:

where

is the coefficient of friction, while N is the normal force. So we have:

since we know that F=300 N and

, we can find N, the magnitude of the normal force:

b) The problem is identical to that of the first part; however, this time the coefficienct of friction is

due to the presence of the oil. Therefore, we have:
Answer:

Explanation:
Given data
velocity v₀=20 cm/s at time t=3s
velocity vf=0 at time t=8 s
To find
Average Acceleration at time=3s to 8s
Solution
As we know that acceleration is first derivative of velocity with respect to time
Use stronger magnets
increase current
push magnets closer to coil
adding more sets of coils