answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
RideAnS [48]
2 years ago
15

A seaplane flies horizontally over the ocean at 50 meters/second. It releases a buoy, which lands after 21 seconds. What's the v

ertical displacement from the plane to the ocean? (Note: Displacement will end up negative, since the direction is down.) Part A: Enter the variable symbol for the quantity you need to find. Use your keyboard and the keypad to enter your answer. Then click Done.
Physics
1 answer:
pantera1 [17]2 years ago
8 0
The motion of the buoy consists of two independent motions on the horizontal and vertical axis.

On the horizontal axis, the motion of the buoy is a uniform motion with constant speed v=50 m/s. On the vertical axis, the motion of the buoy is a uniformly accelerated motion with constant acceleration g=9.81 m/s^2. The vertical position of the buoy at time t is given by
y(t)=h- \frac{1}{2}gt^2
where h is the initial heigth of the buoy when it is released from the plane. At the time t=21 s, the buoy reaches the ground, so y(21 s)=0. If we substitute these two numbers inside the equation, we can find the value of h, the vertical displacement from the plane to the ocean:
0=h- \frac{1}{2}gt^2
h= \frac{1}{2}gt^2= \frac{1}{2}(9.81 m/s^2)(21 s)^2=2163 m
You might be interested in
Passing an electric current through a certain substance produces oxygen and sulfur. This substance cannot be a(n)
Nezavi [6.7K]

Answer:

An Element

Explanation:

Such substance cannot be an element because an element cannot be chemically disintegrated (i.e it cannot be disintegrated via chemical reaction).

4 0
2 years ago
A child is riding a merry-go-round that has an instantaneous angular speed of 1.25 rad/s and an angular acceleration of 0.745 ra
skelet666 [1.2K]

Answer:

So the acceleration of the child will be 8.05m/sec^2

Explanation:

We have given angular speed of the child \omega =1.25rad/sec

Radius r = 4.65 m

Angular acceleration \alpha =0.745rad/sec^2

We know that linear velocity is given by v=\omega r=1.25\times 4.65=5.815m/sec

We know that radial acceleration is given by a=\frac{v^2}{r}=\frac{5.815^2}{4.65}=7.2718m/sec^2

Tangential acceleration is given by

a_t=\alpha r=0.745\times 4.65=3.464m/sec^

So total acceleration will be a=\sqrt{7.2718^2+3.464^2}=8.05m/sec^2

7 0
2 years ago
A carmaker has designed a car that can reach a maximum acceleration of 12 meters/second2. The car’s mass is 1,515 kilograms. Ass
Vlada [557]
1) 15 / 12 = 1.25 ratio
2) to increase acceleration  1.25 times (with same F, or same engine) you have to lower mass 1.25 times
3) 1515/1.25 = 1212 kg

choose A

6 0
2 years ago
Consider the vector b⃗ with magnitude 4.00 m at an angle 23.5∘ north of east. what is the x component bx of this vector? express
BlackZzzverrR [31]
Decomposing the vector b on the x-axis and the y-axis, we get a rectangle triangle where the two sides are bx (x-axis) and by (y-axis), and b is the hypothenuse.
The component in x, bx, is equal to the product between the hypothenuse and the cosine of the angle between b and the x-axis, which is 23.5 ^{\circ}:
b_x = b \cos (23^{\circ})=(4.00 m)(\cos (23^{\circ}))=3.68 m
6 0
2 years ago
Assume you have a rocket in Earth orbit and want to go to Mars. The required change in velocity is ΔV≈9.6km/s . There are two op
Nostrana [21]

Answer: Part 1: Propellant Fraction (MR) = 8.76

Part 2: Propellant Fraction (MR) = 1.63

Explanation: The Ideal Rocket Equation is given by:

Δv = v_{ex}.ln(\frac{m_{f}}{m_{e}} )

Where:

v_{ex} is relationship between exhaust velocity and specific impulse

\frac{m_{f}}{m_{e}} is the porpellant fraction, also written as MR.

The relationship v_{ex} is: v_{ex} = g_{0}.Isp

To determine the fraction:

Δv = v_{ex}.ln(\frac{m_{f}}{m_{e}} )

ln(MR) = \frac{v}{v_{ex}}

Knowing that change in velocity is Δv = 9.6km/s and g_{0} = 9.81m/s²

<u>Note:</u> Velocity and gravity have different measures, so to cancel them out, transform km in m by multiplying velocity by 10³.

<u />

<u>Part 1</u>: Isp = 450s

ln(MR) = \frac{v}{v_{ex}}

ln(MR) = \frac{9.6.10^{3}}{9.81.450}

ln (MR) = 2.17

MR = e^{2.17}

MR = 8.76

<u>Part 2:</u> Isp = 2000s

ln(MR) = \frac{v}{v_{ex}}

ln (MR) = \frac{9.6.10^{3}}{9.81.2.10^{3}}

ln (MR) = 0.49

MR = e^{0.49}

MR = 1.63

8 0
2 years ago
Other questions:
  • Isaac throws an apple straight up from 1.0 m above the ground, reaching a maximum height of 35 meters. Neglecting air resistance
    10·2 answers
  • What is the wavelength of a 100-mhz ("fm 100") radio signal?
    14·2 answers
  • Raphael refers to a wave by noting its wavelength. lucinda refers to a wave by noting its frequency. which student is correct an
    15·1 answer
  • Angelina jumps off a stool. As she is falling, the Earth’s gravitational force on her is larger in magnitude than the gravitatio
    15·2 answers
  • Assuming the starting height is 0.0 m, calculate the potential energy of the cart after it has been elevated to a height of 0.5
    14·1 answer
  • Lindsay is boiling macaroni noodles in a pot of water. The noodles rise and fall as the thermal energy currents move from areas
    14·1 answer
  • When Anna eats an apple, the sugars in that apple are broken down into the substance called glucose. Glucose is then burned in h
    7·2 answers
  • An electrical short cuts off all power to a submersible diving vehicle when it is a distance of 28 m below the surface of the oc
    8·1 answer
  • You are standing in a boat. Which of the following strategies will make the boat start moving? Check all that apply.
    13·2 answers
  • For a magnetic field strength of 2T, estimate the magnitude of the maximum force on a 1-mm-long segment of a single cylindrical
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!