answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Harman [31]
1 year ago
5

An astronaut on a space walk floats a little too far away

Physics
2 answers:
SSSSS [86.1K]1 year ago
6 0

Answer:

The astronaut can throw the hammer in a direction away from the space station. While he is holding the hammer, the total momentum of the astronaut and hammer is 0 kg • m/s. According to the law of conservation of momentum, the total momentum after he throws the hammer must still be 0 kg • m/s. In order for momentum to be conserved, the astronaut will have to move in the opposite direction of the hammer, which will be toward the space station.

edge 2020

Lady bird [3.3K]1 year ago
3 0

Answer:

He can throw it away from himself.

Explanation:

Newtons Third Law says that everything has an equal, yet opposite reaction on other objects.

You might be interested in
A charge q = 3 × 10-6 C of mass m = 2 × 10-6 kg, and speed v = 5 × 106 m/s enters a uniform magnetic field. The mass experiences
NeX [460]

Answer:

Magnetic field, B = 0.004 mT

Explanation:

It is given that,

Charge, q=3\times 10^{-6}\ C

Mass of charge particle, m=2\times 10^{-6}\ C

Speed, v=5\times 10^{6}\ m/s

Acceleration, a=3\times 10^{4}\ m/s^2

We need to find the minimum magnetic field that would produce such an acceleration. So,

ma=qvB\ sin\theta

For minimum magnetic field,

ma=qvB

B=\dfrac{ma}{qv}

B=\dfrac{2\times 10^{-6}\ C\times 3\times 10^{4}\ m/s^2}{3\times 10^{-6}\ C\times 5\times 10^{6}\ m/s}

B = 0.004 T

or

B = 4 mT

So, the magnetic field produce such an acceleration at 4 mT. Hence, this is the required solution.

4 0
2 years ago
A cliff diver running 3.60 m/s dives out horizontally from the edge of a vertical cliff and reaches the water below 2.00 s later
mart [117]

Explanation:

It is given that,

The horizontal speed of a cliff diver, v_x=3.6\ m/s

It reaches the water below 2.00 s later, t = 2 s

Let d_x is the distance where the diver hit the water. It can be calculated as follows :

d_x=v_x\times t\\\\=3.6\times 2\\\\=7.2\ m

Let d_y is the height of the cliff. It can be calculated using second equation of motion as follows :

d_y=u_yt+\dfrac{1}{2}gt^2\\\\d_y=\dfrac{1}{2}\times 9.8\times 2^2\\\\=19.6\ m

So, the cliff is 19.6 m high and it will hit the water at a distance of 19.6 m.

8 0
1 year ago
How do air mass conditions ahead of the squall line support the development of new cell?
IRISSAK [1]
<span>Storm cells in a squall line typically move from the southwest to the northeast, and as the mature cells in the northeast begin to die off, new ones are formed at the opposite end to advance the line. The air in the southwest corner has strong vertical updrafts that allow new cells to grow and develop into thunderstorms.</span>
7 0
2 years ago
A 25N force is applied to a bar that can pivot around its end. The force is r=0.75 m away from the end of an angle at 0= 30. wha
Alecsey [184]

Answer:

<h2>9.375Nm</h2>

Explanation:

The formula for calculating torque τ = Frsin∅ where;

F = applied force (in newton)

r = radius (in metres)

∅ = angle that the force made with the bar.

Given  F= 25N, r = 0.75m and ∅ = 30°

torque on the bar τ  = 25*0.75*sin30°

τ = 25*0.75*0.5

τ = 9.375Nm

The torque on the bar is 9.375Nm

6 0
2 years ago
An automobile traveling at 25.0 km/h along a straight, level road accelerates to 65.0 km/h in 6.00 s. what is the magnitude of t
USPshnik [31]
Note that
1 km/h = (1000 m)/(3600 s) = 0.27778 m/s

Initial velocity, v₁ = 25 km/h = 6.9444 m/s
Final velocity, v₂ = 65 km/h = 18.0556 m/s

Time interval, dt = 6 s.

Calculate average acceleration.
a = (v₂ - v₁)/dt
   = (18.0556 - 6.9444 m/s)/(6 s)
   = 1.852 m/s²

Answer:
The average acceleration is 1.85 m/s² (nearest hundredth)
3 0
2 years ago
Other questions:
  • Anna is sitting in a moving cart and throws a ball straight up. Theoretically, the ball should land in the cart, but it lands on
    7·2 answers
  • Part a consider another special case in which the inclined plane is vertical (θ=π/2). in this case, for what value of m1 would t
    7·1 answer
  • Hippos spend much of their lives in water, but amazingly, they don’t swim. manatees, They have, like little very body fat. The d
    8·1 answer
  • The gamma photons created during a PET scan are detected when they encounter a scintillator and produce a burst of light. This l
    11·1 answer
  • Two sinusoidal waves are identical except for their phase. When these two waves travel along the same string, for which phase di
    12·1 answer
  • A rope is attached to a block. The rope pulls on the block with a force of 240 N, at an angle of 40 degrees to the horizontal (t
    10·2 answers
  • A disk of known radius and rotational inertia can rotate without friction in a horizontal plane around its fixed central axis. T
    7·1 answer
  • A student is conducting a physics experiment and rolls four different-
    7·1 answer
  • A current of 0.001 A can be felt by the human body. 0.005 A can produce a pain response. 0.015 A can cause a loss of muscle cont
    9·1 answer
  • Emir is standing in a treehouse and looking down at a swingset in the yard next door. The angle of depression from Emir's eyelin
    10·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!