Answer:
The answer is: c. It does not move
Explanation:
Because the gravitational force is characterized by being an internal force within the Earth-particle system, in this case, the object of mass M. And since in this system there is no external force in the system, it can be concluded that the center of mass of the system will not move.
Answer:

(Downwards)
(Towards Left)
Explanation:
As we know that beam is in equilibrium
So here we can use torque balance as well as force balance for the beam
Now by torque balance equation at the pivot we can say

As we know that
mg = 1.40 kN
F = 5 kN
so we will have


Now force balance in vertical direction


(Downwards)
Force balance in horizontal direction


(Towards Left)
Answer:
a. 
b. 
Explanation:
The inertia can be find using
a.





now to find the torsion constant can use knowing the period of the balance
b.
T=0.5 s

Solve to K'


Answer:
0.08m/s
Explanation:
Given data
M1= 69kg
v1= 2.61m/s
M2= 0.22kg
v2= 25.2m/s
Before snowball is thrown:
Total mass of skater + snowball = 69+ 0.22 = 69.22kg
Total Momentum of skater + snowball = mv = 69.22 x 2.61 = 180.7 kgm/s
After snowball is thrown:
Let's call the velocity of the skater V.
Total momentum = momentum of skater + momentum of snowball
=69.22V + (5.544)
= 69.22V + 5.544
So:
180.7 = 69.22V+5.544
180.7- 5.544= 69.22V
175.156= 69.22V
V= 175.156/69.22
V = 2.53m/s
The total momentum after catching the snowball is mV or:
(69.0 + 0.22) x V
So:
5.544= 69.22V
V= 5.544/69.22
V=0.08m/s
The velocity of the ice skater after throwing the snowball is 0.08m/s
Explanation:
hopefully that makes sense. the position doesn't change over the 5 seconds, meaning it's stopped but time still continues. then when the slope is negative this shows the bear's position becoming negative (backing up, changing direction).