Answer:
1 angstrom = 0.1nm
5000 angstrom = 5000/1 × 0.1nm
<h3>= 500nm</h3>

5000 angstrom = 5000 × 1 × 10^-10
<h3>= 5 × 10^-7 m</h3>
Hope this helps you
Answer:

Explanation:
As we know that backpack is kicked on the rough floor with speed "v"
So here as per force equation in vertical direction we know that

so normal force on the block is given as

now the magnitude of kinetic friction on the block is given as


now when bag is sliding on the floor then net deceleration of the block due to friction is given as


now we know that bag hits the opposite wall at L distance away in time t
so we have



This approach is called the dimensional analysis which involves only the units of measurement without their magnitudes. You simply have to do the operations by using variables. Cancel out like items that may appear both in the numerator and denominator side. The solution is as follows:
F = mv²/r = [kg][m/s]²/[m] = [kg][m²⁻¹][1/s²] = [kg·m/s²]
We are missing an important piece of information needed to answer this question: the number of kcal Charles losses per day. However, we can come up with a general equation in which kcal/day is the only independent variable.
We know that it takes 3500 kcal to lose one pound. To lose 5 pounds, Charles needs to lose 5 x 3500 kcal = 17,500 kcal.
To find how many days it takes Charles to lose 17,500 kcal (5 pounds), we must divide that amount by the number of kcal Charles loses per day.
Here is the equation to calculate that number
Number of days= 17500 / (kcal per day)
If given calories, remember that 1000 calories = 1 kcal, and .001 kcal = 1 cal
Answer:
The final temperature of the object will be 42.785 °C
Explanation:
When the heat added or removed from a substance causes a change in temperature in it, this heat is called sensible heat.
In other words, sensible heat is the amount of heat that a body absorbs or releases without any changes in its physical state (phase change), so that the temperature varies.
The equation for calculating the heat exchanges in this case is:
Q = c * m * ΔT
where Q is the heat exchanged by a body of mass m, constituted by a substance of specific heat c and where ΔT is the variation in temperature.
In this case:
- Q= 450 J
- c= 2.89

- m= 20 g
- ΔT= Tfinal - Tinitial= Tfinal - 35 °C
Replacing:
450 J= 2.89
*20 g* (Tfinal - 35°C)
Solving for Tfinal:

7.785 °C=Tfinal - 35°C
7.785 °C + 35°C= Tfinal
42.785 °C=Tfinal
<u><em>The final temperature of the object will be 42.785 °C</em></u>