Answer:

Explanation:
Given that,
Initial speed, u = 5 m/s
Final speed, v = 10 m/s
Time, t = 2 s
The radius of the tire of the bike, r = 35 cm
We need to find the angular acceleration of the pebble during those two seconds. It can be calculated as follows.

So, the required angular acceleration of the pebble is equal to
.
Explanation:
Below is an attachment containing the solution.
Answer:
Isothermal : P2 = ( P1V1 / V2 ) , work-done 
Adiabatic : : P2 =
, work-done =
W = 
Explanation:
initial temperature : T
Pressure : P
initial volume : V1
Final volume : V2
A) If expansion was isothermal calculate final pressure and work-done
we use the gas laws
= PIVI = P2V2
Hence : P2 = ( P1V1 / V2 )
work-done :

B) If the expansion was Adiabatic show the Final pressure and work-done
final pressure

where y = 5/3
hence : P2 = 
Work-done
W = 
Where 
Answer:
The distribution is as depicted in the attached figure.
Explanation:
From the given data
- The plane wall is initially with constant properties is initially at a uniform temperature, To.
- Suddenly the surface x=L is exposed to convection process such that T∞>To.
- The other surface x=0 is maintained at To
- Uniform volumetric heating q' such that the steady state temperature exceeds T∞.
Assumptions which are valid are
- There is only conduction in 1-D.
- The system bears constant properties.
- The volumetric heat generation is uniform
From the given data, the condition are as follows
<u>Initial Condition</u>
At t≤0

This indicates that initially the temperature distribution was independent of x and is indicated as a straight line.
<u>Boundary Conditions</u>
<u>At x=0</u>
<u />
<u />
This indicates that the temperature on the x=0 plane will be equal to To which will rise further due to the volumetric heat generation.
<u>At x=L</u>
<u />
<u />
This indicates that at the time t, the rate of conduction and the rate of convection will be equal at x=L.
The temperature distribution along with the schematics are given in the attached figure.
Further the heat flux is inferred from the temperature distribution using the Fourier law and is also as in the attached figure.
It is important to note that as T(x,∞)>T∞ and T∞>To thus the heat on both the boundaries will flow away from the wall.
Answer:
Technician A is right. The situation will happens even with only two bulbs in series
Explanation:
We must take into account that
1.- All electric device need its nominal voltage to operate
2.-Any and all electric device means an electric load for the source in terms of equation that means any device will implies a drop voltage of V = I*R ( I the flows current and R the resistance of the device)
3.-Nominal voltage for bulbs are specify for houses voltages you find between fase and neutral wires for instance in Venezuela 120 (v).
4.-In a imaginary circuit of only one bulb, the nominal voltage will be applied and the bulb will operates correctly, but when you add another bulb (in series) the nominal voltage will split between the two bulbs ( we could find a situation such as the first bulb work properly but the second one does not). The voltage split according to Ohms law (in such way that the sum of voltage between the terminal of the first bulb plus the voltage at terminals of the second one are equal to nominal voltage.
For that reason all the bulbs are connected in parallel in wich case all of them will operate with the common voltage