answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Margarita [4]
2 years ago
6

A frog leaps up from the ground and lands on a step 0.1 m above the ground 2 s later. We want to find the

Physics
1 answer:
mash [69]2 years ago
4 0

Answer:

\Delta x = v_0 t + \frac{1}{2}at^2

Explanation:

To solve this problem, we can use the following suvat equation:

\Delta x = v_0 t + \frac{1}{2}at^2

where

\Delta x is the vertical displacement of the frog

v_0 is the initial vertical velocity

t is the time

a is the acceleration

We have chosen this formula because apart from v_0, all the other quantities are known. In fact:

\Delta x =0.1 m is the vertical displacement

t = 2 s is the total time of flight

a=g=-9.8 m/s^2 is the acceleration due to gravity (negative because it is downward)

Therefore, solving for v_0, we find the initial velocity of the frog:

v_0 = \frac{\Delta x-\frac{1}{2}at^2}{t}=\frac{0.1-\frac{1}{2}(-9.8)(2)^2}{2}=9.85 m/s

You might be interested in
A transverse wave on a string has an amplitude A. A tiny spot on the string is colored red. As one cycle of the wave passes by,
DiKsa [7]

Since it's a transverse wave, a particle on the string moves left and right as the wave passes by, but the particle doesn't travel forward or backward at all.

So the little red dot moves 'A' to the left, then 'A' back to the center, then 'A' to the right, then 'A' back to the center again.

All together, the red dot moves a total distance of <em>4A . (choice 'a')</em>

6 0
2 years ago
In a simple circuit a 6-volt dry cell pushes charge through a single lamp which has a resistance of 3 Ω. According to Ohms law t
RSB [31]

Answer:

The answers and workings is in the Explanation section

Explanation:

<em>In a simple circuit a 6-volt dry cell pushes charge through a single lamp which has a resistance of 3 Ω. According to Ohms law the current through the circuit is _____________ Amps. </em>

According to Ohm’s law V =I*R  

Where V = Voltage, I = Current and R = Resistance

I = V/R =6/3 =2 Amps of current

Answer = 2 Amps

<em> If a second identical lamp is connected in series, the 6-volt battery must push a charge through a total resistance of ________ Ω</em>.  <em>The current in the circuit is then __________ Amps. </em>

Since the second lamp is connected in series with the first, the total resistance will R₂ = 3 + 3 = 6Ω

2 resistance in series  R₂ =  6Ω

The current in the circuit with the two lamps connected in series is I₂ =V/R₂ =6/6 = 1 Amps

The current is 1 Amps

Answer =  6Ω  and 1 Amps

<em>If a third identical lamp is connected in series, the total resistance is now _________Ω.  The current through all three lamps in series is now _________ Amps.  </em>

Since the third lamp is connected in series with the first and second, the total resistance will R₃ = 3 + 3 + 3 = 9Ω

total resistance of the 3 lamps R₃ =  9Ω

The current in the circuit with the three lamps connected in series is

I =V/R₃ =6/9 = 0.67 Amps

The current through the 3 lamps I₃ = 0.67 Amps

Answer =  9Ω  and 0.67 Amps

<em>The current through each individual lamp is __________ Amps.  </em>

Since all 3 lamps are connected in series, the same current will flow through each of the  3 lamps, and that current is I₃  

The current through each individual lamp is 0.67 Amp

Answer = 0.67 Amp

<em>What is the power when a voltage of 120 volts drives a current of 3 amps through a device?  </em>

The formula for power P = I*V =120*3 = 360 Watts

power P  = 360 Watts

Answer = 360 Watts

<em>What is the current when a 90-W light bulb is connected to 120 V? </em>

From P =I*V, make I the subject of the formula, I = P/V =90/120 = 0.75

Current= 0.75 Amps

Answer =  0.75 Amps

<em>How much current does a 75-W light bulb draw when connected to 120 V?</em>  

Current I =P/V = 75/120 = 0.625 Amps.

Answer = 0.625 Amps

<em>If part of an electric circuit dissipates energy at 6 W when it draws a current of 3 A, what voltage is impressed across it? </em>

Voltage V =P/I =6/3 =2 Volts

Answer = 2 Volts

<em> If a 60 W light bulb at 120 V is left on in your house to prevent burglary, and the power company charges 10 cents per kilowatt-hour, how much will it cost to leave the bulb on for 30 days? Show your work. </em>

24 hours make 1 day, so the number of hours the bulb was left on = 24 *30 = 720 hours

The power rating of the bulb is 60W = 60/1000 = 0.06 KiloWatt

Total power consumed in kilowatt-hour = 0.06 * 720 = 43.2 kilowatt-hour

Cost for 30 days = 0.1*43.2 = $4.32 ( note that 10 Cents = $0.1)

Answer =  $4.32

4 0
1 year ago
Henrietta is going off to her physics class, jogging down the sidewalk at a speed of 4.15 m/s . Her husband Bruce suddenly reali
aleksandr82 [10.1K]

Answer:

a 15.22 m/s

b 45.65 m

Explanation:

Using the same formula,

x = vt, where

x is now 45.65, and

t is 3 s, then

45.65 = 3v

v = 45.65/3

v = 15.22 m/s

See the attachment for the part b. We used the distance gotten in part B, to find question A

5 0
1 year ago
A nonuniform, but spherically symmetric, distribution of charge has a charge density ρ(r) given as follows:
Nikitich [7]

Answer:

r ≥ R, E = Q / (4πR²ε₀)

r ≤ R, E = 12Q (⅓ (r/R)³ − ¼ (r/R)⁴) / (4πr²ε₀)

Maximum at r = ⅔ R

Maximum field of E = Q / (3πε₀R²)

Explanation:

Gauss's law states:

∮E·dA = Q/ε₀

What that means is, if you have electric field vectors E passing through areas dA, the sum of those E vector components perpendicular to the dA areas is equal to the total charge Q divided by the permittivity of space, ε₀.

a) r ≥ R

Here, we're looking at the charge contained by the entire sphere.  The surface area of the sphere is 4πR², and the charge it contains is Q.  Therefore:

E(4πR²) = Q/ε₀

E = Q / (4πR²ε₀)

b) r ≤ R

This time, we're looking at the charge contained by part of the sphere.

Imagine the sphere is actually an infinite number of shells, like Russian nesting dolls.  For any shell of radius r, the charge it contains is:

dq = ρ dV

dq = ρ (4πr²) dr

The total charge contained by the shells from 0 to r is:

q = ∫ dq

q = ∫₀ʳ ρ (4πr²) dr

q = ∫₀ʳ ρ₀ (1 − r/R) (4πr²) dr

q = 4πρ₀ ∫₀ʳ (1 − r/R) (r²) dr

q = 4πρ₀ ∫₀ʳ (r² − r³/R) dr

q = 4πρ₀ (⅓ r³ − ¼ r⁴/R) |₀ʳ

q = 4πρ₀ (⅓ r³ − ¼ r⁴/R)

Since ρ₀ = 3Q/(πR³):

q = 4π (3Q/(πR³)) (⅓ r³ − ¼ r⁴/R)

q = 12Q (⅓ (r/R)³ − ¼ (r/R)⁴)

Therefore:

E(4πr²) = 12Q (⅓ (r/R)³ − ¼ (r/R)⁴) / ε₀

E = 12Q (⅓ (r/R)³ − ¼ (r/R)⁴) / (4πr²ε₀)

When E is a maximum, dE/dr is 0.

First, simplify E:

E = 12Q (⅓ (r/R)³ − ¼ (r/R)⁴) / (4πr²ε₀)

E = Q (4 (r³/R³) − 3 (r⁴/R⁴)) / (4πr²ε₀)

E = Q (4 (r/R³) − 3 (r²/R⁴)) / (4πε₀)

Take derivative and set to 0:

dE/dr = Q (4/R³ − 6r/R⁴) / (4πε₀)

0 = Q (4/R³ − 6r/R⁴) / (4πε₀)

0 = 4/R³ − 6r/R⁴

0 = 4R − 6r

r = ⅔R

Evaluating E at r = ⅔R:

E = Q (4 (⅔R / R³) − 3 (⁴/₉R² / R⁴)) / (4πε₀)

E = Q (8 / (3R²) − 4 / (3R²)) / (4πε₀)

E = Q (4 / (3R²)) / (4πε₀)

E = Q (1 / (3R²)) / (πε₀)

E = Q / (3πε₀R²)

3 0
1 year ago
Dźwig podniósł kontener o masie m = 80 kg na wysokość h = 10 m. Pierwsze 5 m kontener przebył z przy-
Nady [450]

Answer:

a)   W_total = 8240 J , b)  W₁ / W₂ = 1.1

Explanation:

In this exercise you are asked to calculate the work that is defined by

       W = F. dy

As the container is rising and the force is vertical the scalar product is reduced to the algebraic product.

       W = F dy = F Δy

let's apply this formula to our case

a) Let's use Newton's second law to calculate the force in the first y = 5 m

          F - W = m a

          W = mg

          F = m (a + g)

          F = 80 (1 + 9.8)

          F = 864 N

The work of this force we will call it W1

   We look for the force for the final 5 m, since the speed is constant the force must be equal to the weight (a = 0)

        F₂ - W = 0

        F₂ = W

        F₂ = 80 9.8

        F₂ = 784 N

The work of this fura we will call them W2

The total work is

         W_total = W₁ + W₂

         W_total = (F + F₂) y

         W_total = (864 + 784) 5

         W_total = 8240 J

b) To find the relationship between work with relate (W1) and work with constant speed (W2), let's use

        W₁ / W₂ = F y / F₂ y

        W₁ / W₂ = 864/784

        W₁ / W₂ = 1.1

7 0
1 year ago
Other questions:
  • One student did an experiment with sand, rocks, pebbles, and water. The steps of the experiment are shown below.
    12·1 answer
  • The capacitance of A conductor is affected by the presence of A second conductor that is uncharged and isolated electrically. Wh
    12·1 answer
  • The suns energy is classified by the
    15·2 answers
  • An undiscovered planet, many light-years from Earth, has one moon which has a nearly circular periodic orbit. If the distance fr
    9·1 answer
  • Through how many volts of potential difference must an electron, initially at rest, be accelerated to achieve a wave length of 0
    13·1 answer
  • You go to an amusement park with your friend Betty, who wants to ride the 70-m-diameter Ferris wheel. She starts the ride at the
    6·1 answer
  • Compressed air is used to fire a 60 g ball vertically upward from a 0.70-m-tall tube. The air exerts an upward force of 3.0 N on
    8·1 answer
  • A boat of mass 250 kg is coasting, with its engine in neutral, through the water at speed 1.00 m/s when it starts to rain with i
    10·1 answer
  • Consider a vacuum-filled parallel plate capacitor (no dielectric material between the plates). What is the ratio of conduction c
    11·1 answer
  • A projectile is launched at an angle of 60° from the horizontal and at a velocity of
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!