answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
sweet-ann [11.9K]
2 years ago
6

A high school physics instructor catches one of his students chewing gum in class. He decides to discipline the student by askin

g that he stick the gum to a fan and calculate how fast the fan is moving when the gum gets thrown off. The label says that the diameter of the fan is d = 29 cm, and at full speed it turns at a rate of f = 35 rev/s, and that the fan is guaranteed to accelerate uniformly. The fan takes t = 11 s to go from rest to full speed.a. Calculate the maximum the angular velocity of the fan ωmax, in radians per second.b. Surprisingly, the gum seems to remain stuck to the fan at this speed. Calculate the angular acceleration of the gum α, in radians per square second, as the fan is speeding up. sig.gif?tid=7M79-EB-88-49-B44F-20531c. Calculate the tangential component of the acceleration of the gum atan, in meters per square second, as the fan is speeding up.d. What is the magnitude of the centripetal acceleration of the gum arad, in meters per square second, when the fan reaches full speed?e. What is the direction of the centripetal acceleration of the gum, as the fan is turning at top speed?f. Calculate the tangential component of the acceleration of the gum atan,f, in meters per square second, when the fan is at full speed.g. Soon after reaching this speed, the gum becomes un-stuck from the fan blade. Determine the linear speed of the gum v, in meters per second, immediately after it leaves the fan.
Physics
1 answer:
KengaRu [80]2 years ago
7 0

a) 219.8 rad/s

b) 20.0 rad/s^2

c) 2.9 m/s^2

d) 7005 m/s^2

e) Towards the axis of rotation

f) 0 m/s^2

g) 31.9 m/s

Explanation:

a)

The angular velocity of an object in rotation is the rate of change of its angular position, so

\omega=\frac{\theta}{t}

where

\theta is the angular displacement

t is the time elapsed

In this problem, we are told that the maximum angular velocity is

\omega_{max}=35 rev/s

The angle covered during 1 revolution is

\theta=2\pi rad

Therefore, the maximum angular velocity is:

\omega_{max}=35 \cdot 2\pi = 219.8 rad/s

b)

The angular acceleration of an object in rotation is the rate of change of the angular velocity:

\alpha = \frac{\Delta \omega}{t}

where

\Delta \omega is the change in angular velocity

t is the time elapsed

Here we have:

\omega_0 = 0 is the initial angular velocity

\omega_{max}=219.8 rad/s is the final angular velocity

t = 11 s is the time elapsed

Therefore, the angular acceleration is:

\alpha = \frac{219.8-0}{11}=20.0 rad/s^2

c)

For an object in rotation, the acceleration has two components:

- A radial acceleration, called centripetal acceleration, towards the centre of the circle

- A tangential acceleration, tangential to the circle

The tangential acceleration is given by

a_t = \alpha r

where

\alpha is the angular acceleration

r is the radius of the circle

Here we have

\alpha =20.0 rad/s^2

d = 29 cm is the diameter, so the radius is

r = d/2 = 14.5 cm = 0.145 m

So the tangential acceleration is

a_t=(20.0)(0.145)=2.9 m/s^2

d)

The magnitude of the radial (centripetal) acceleration is given by

a_c = \omega^2 r

where

\omega is the angular velocity

r is the radius of the circle

Here we have:

\omega_{max}=219.8 rad/s is the angular velocity when the fan is at full speed

r = 0.145 m is the distance of the gum from the centre of the circle

Therefore, the radial acceleration is

a_c=(219.8)^2(0.145)=7005 m/s^2

e)

The direction of the centripetal acceleration in a rotational motion is always towards the centre of the axis of rotation.

Therefore also in this case, the direction of the centripetal acceleration is towards the axis of rotation of the fan.

f)

The magnitude of the tangential acceleration of the fan at any moment is given by

The tangential acceleration is given by

a_t = \alpha r

where

\alpha is the angular acceleration

r is the radius of the circle

When the fan is rotating at full speed, we have:

\alpha=0, since the fan is no longer accelerating, because the angular velocity is no longer changing

r = 0.145 m

Therefore, the tangential acceleration when the fan is at full speed is

a_t=(0)(0.145)=0 m/s^2

g)

The linear speed of an object in rotational motion is related to the angular velocity by the formula:

v=\omega r

where

v is the linear speed

\omega is the angular velocity

r is the radius

When the fan is rotating at maximum angular velocity, we have:

\omega=219.8 rad/s

r = 0.145 m

Therefore, the linear speed of the gum as it is un-stucked from the fan will be:

v=(219.8)(0.145)=31.9 m/s

You might be interested in
Most workers in nanotechnology are actively monitored for excess static charge buildup. the human body acts like an insulator as
irga5000 [103]
Sometimes arithmetic problems can be solved much more easily using the dimensional analysis approach. You focus on the units of the given information. Then, you manipulate them applying the laws of algebra where like units cancel, in order to end up with the unit of the unknown.

Given:
-50 nc/step
31 steps
Unknown: charge

Thus,
Charge = -50 nc/step * 31 steps =<em> -1550 nc</em>
7 0
1 year ago
The position of a particle moving along the x axis may be determined from the expression x(t) = btu + ctv, where x will be in me
KIM [24]

As per given equation we have

x = bt^u + ct^v

now as per the dimensional analysis we can say that dimension of right side of equation must be equal to left side of the equation

now as per left side of equation its dimension is same as length or meter

now we can say it should be meter on right side also

bt^u = M^0L^1T^0

b*T^8 = M^0L^1T^0

b = M^0L^1T^{-8}

similarly for other term we have

ct^v = M^0L^1T^0

c*T^7 = M^0L^1T^0

c = M^0L^1T^{-7}

<em>so above are the dimensions of b and c</em>

8 0
1 year ago
Mr. Smith is designing a race where velocity will be measured. Which course would allow velocity to accurately get a winner?
liraira [26]
I’m not completely sure but most likely is is the 10 mile bike ride, I hope I can help! (:
6 0
2 years ago
Read 2 more answers
How is a seismograph similar to an X-ray?
aleksklad [387]

Answer: Seismograph is an instrument that is used to measure the vibration of the earthquake. It is based on seismic waves. X ray is an electromagnetic energy wave that is used for CAT ( computerized axial tomography) scan.

Hence, both seismic wave and X ray are energy waves.

The velocity of seismic waves is different in different media. Similarly, X ray loses its amplitude depending upon the dense layer of the tissue.

5 0
2 years ago
A flat, wide cloud floats horizontally a few kilometers above the surface of Earth. Its lower surface carries a uniform surface
valentinak56 [21]

Answer:

\frac{kQ}{r^2} r^

Explanation:

Electric field strength= Force/unit charge

E= (kQq/r²)/q ₓ r

where r is the unit vector in the direction of unit charge

E= \frac{kQ}{r^2} r^

4 0
2 years ago
Other questions:
  • What are the two forces that keep a pendulum swinging?
    13·1 answer
  • If a spear is thrown at a fish swimming in a lake, it will often miss the fish completely. Why does this happen?
    13·2 answers
  • An apple falls from an apple tree growing on a 20° slope. The apple hits the ground with an impact velocity of 16.2 m/s straight
    12·1 answer
  • An 8.0-kg history textbook is placed on a 1.25-m high desk. How large is the gravitational potential energy of the textbook-Eart
    11·2 answers
  • g A projectile is launched with speed v0 from point A. Determine the launch angle ! which results in the maximum range R up the
    12·1 answer
  • Two trucks with equal mass are attracted to each other with a gravitational force of 5.3 x 10 -4 N. The trucks are separated by
    12·1 answer
  • The motion of a particle connected to a spring is described by x = 10 sin (pi*t). At
    8·1 answer
  • Block A with a mass of 10 kg rests on a 30 degree incline. the coefficient of kinetic friction is 0.20. theattatched string is p
    13·1 answer
  • Before you start taking measurements though, we’ll first make sure you understand the underlying concepts involved. By what meth
    9·1 answer
  • A student practicing for a cross country meet runs 250 m in 30 s. What is the average speed
    12·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!