Answer:
2.5 ms
Explanation:
v = Speed of sound in air = 343 m/s
f = Frequency = 200 Hz
Wavelength is given by

In the case of destructive interference, path difference is given by

Delay is givenn by

The minimum headphone delay, that will cancel this noise is 2.5 ms
Answer:

Explanation:
For a charge moving perpendicularly to a magnetic field, the force experienced by the charge is given by:

where
q is the magnitude of the charge
v is the velocity
B is the magnetic field strength
In this problem,



So the force experienced by the electrons is

Answer:
<u></u>
- <u>1. The potential energy of the swing is the greatest at the position B.</u>
- <u>2. As the swing moves from point B to point A, the kinetic energy is increasing.</u>
Explanation:
Even though the syntax of the text is not completely clear, likely because it accompanies a drawing that is not included, it results clear that the posittion A is where the seat is at the lowest position, and the position B is upper.
The gravitational <em>potential energy </em>is directly proportional to the height of the objects with respect to some reference altitude. Thus, when the seat is at the position A the swing has the smallest potential energy and when the seat is at the <em>position B the swing has the greatest potential energy.</em>
Regarding the forms of energy, as the swing moves from point B to point A, it is going downward, gaining kinetic energy (speed) at the expense of the potential energy (losing altitude). When the seat passes by the position A, the kinetic energy is maximum and the potential energy is miminum. Then the seat starts to gain altitude again, losing the kinetic energy and gaining potential energy, up to it gets to the other end,
Answer:

Explanation:
Here we know that the glider is accelerated uniformly from rest to final speed of 25.7 m/s in total distance of d = 46.9 m
so we will have


d = 46.9
so for uniformly accelerated motion we have



now we will find the total work done given as change in kinetic energy



now power is given as


