answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Grace [21]
2 years ago
6

The Sun orbits the center of the Milky Way galaxy once each 2.60 × 108 years, with a roughly circular orbit averaging 3.00 × 104

light years in radius. (A light year is the distance traveled by light in 1 y.)
Calculate the centripetal acceleration of the Sun in its galactic orbit. Does your result support the contention that a nearly inertial frame of reference can be located at the Sun?
Physics
1 answer:
Mamont248 [21]2 years ago
8 0

To solve this problem it is necessary to apply the kinematic equations of linear and angular motion, as well as the given definitions of the period.

Centripetal acceleration can be found through the relationship

a_c = \frac{v^2}{R}

Where

v = Tangential Velocity

R = Radius

At the same time linear velocity can be expressed in terms of angular velocity as

v = R\omega

Where,

R = Radius

\omega = Angular Velocity

PART A) From this point on, we can use the values used for the period given in the exercise because the angular velocity by definition is described as

\omega = \frac{2\pi}{T}

T = Period

So replacing we have to

\omega = \frac{2\pi}{2.6*10^8years}\\\omega = 2.4166*10^{-8}rad/years\\\omega = 2.4166*10^{-8}rad/years(\frac{1years}{365days})(\frac{1day}{86400s})\\\omega = 7.663*10^{-16}rad/s

Since 1 Light year = 9.48*10^{15}m

Then the radius in meters would be

R = (3*10^4ly)(\frac{9.48*10^{15}m}{1ly})

R = 2.844*10^{20}m

Then the centripetal acceleration would be

a_c = \frac{v^2}{R}\\a_c = \frac{(R\omega)^2}{R}\\a_c = R\omega^2 \\a_c = 2.844*10^{20}(7.663*10^{-16})^2\\a_c = 1.67*10^{-10}m/s^2

From the result obtained, considering that it is an unimaginably low value of an order of less than 10^{-10} it is possible to conclude that it supports the assertion on the inertial reference frame.

You might be interested in
You place a 500 g block of an unknown substance in an insulated container filled 2 kg of water. The block has an initial tempera
Nina [5.8K]

Answer:

3349J/kgC

Explanation:

Questions like these are properly handled having this fact in mind;

  • Heat loss = Heat gained

Quantity of heat = mcΔ∅

m = mass of subatance

c = specific heat capacity

Δ∅ = change in temperature

m₁c₁(∅₂-∅₁) = m₂c₂(∅₁-∅₃)

m₁ = mass of block = 500g = 0.5kg

c₁  = specific heat capacity of unknown substance

∅₂ = block initial temperature = 50oC

∅₁ = equilibrium temperature of block and water after mix= 25oC

m₂= mass of water = 2kg

c₂ = specific heat capacity of water = 4186J/kg C

∅₃ = intial temperature of water = 20oC

0.5c₁(50-25) = 2 x 4186(25-20)

And we can find c₁ which is the unknown specific heat capacity

c₁ = \frac{2*4186*5}{0.5*25}= 3348.8J/kg C≅ 3349J/kg C

4 0
2 years ago
An electron moves with a constant horizontal velocity of 3.0 × 106 m/s and no initial vertical velocity as it enters a deflector
Ghella [55]

Answer:

a = 5.05 x 10¹⁴ m/s²

Explanation:

Consider the motion along the horizontal direction

v_{x} = velocity along the horizontal direction = 3.0 x 10⁶ m/s

t = time of travel

X = horizontal distance traveled = 11 cm = 0.11 m

Time of travel can be given as

t = \frac{X}{v_{x}}

inserting the values

t = 0.11/(3.0 x 10⁶)

t = 3.67 x 10⁻⁸ sec

Consider the motion along the vertical direction

Y = vertical distance traveled = 34 cm = 0.34 m

a = acceleration = ?

t = time of travel  = 3.67 x 10⁻⁸ sec

v_{y} = initial velocity along the vertical direction = 0 m/s

Using the kinematics equation

Y = v_{y} t + (0.5) a t²

0.34 = (0) (3.67 x 10⁻⁸) + (0.5) a (3.67 x 10⁻⁸)²

a = 5.05 x 10¹⁴ m/s²

7 0
2 years ago
A yo-yo is made from two uniform disks, each with mass m and radius R, connected by a light axle of radius b. A light, thin stri
schepotkina [342]

Answer:

linear acceleration

a = \frac{2g}{2 + \frac{R}{b}}

angular acceleration

\alpha = \frac{2g}{R(2 + \frac{R}{b})}

Explanation:

As we know that the force due to tension force is upwards while weight of the disc is downwards

so we will have

2mg - T = 2ma

also we have

Tb = (\frac{1}{2}mR^2 + \frac{1}{2}mR^2)\alpha

now we have

Tb = mR^2(\frac{a}{R})

T = \frac{mRa}{b}

now we have

2mg = (2ma + \frac{mRa}{b})

a(2 + \frac{R}{b}) = 2g

so we have

linear acceleration

a = \frac{2g}{2 + \frac{R}{b}}

angular acceleration

\alpha = \frac{2g}{R(2 + \frac{R}{b})}

4 0
2 years ago
When compared to others, how is a greater velocity represented on a motion map?
kakasveta [241]
Motion map has the points spaced farther apart (because the car would go a further distance in each second), and the velocity vectors (arrows) are longer, because the car is moving faster. So 'with longer vectors' is the correct answer
8 0
2 years ago
Read 2 more answers
A hockey puck of mass m traveling along the x axis at 4.5 m/s hits another identical hockey puck at rest. If after the collision
TEA [102]

Answer:

D) No, since kinetic energy is not conserved.

Explanation:

Since momentum is always conserved in all collision

so in Y direction we can say

0 = m(3.5 sin30) - mv_y

v_y = 1.75 m/s

Now similarly in X direction we will have

m(4.5) = m(3.5 cos30 ) + mv_x

v_x = 1.47 m/s

now final kinetic energy of both puck after collision is given as

KE_f = \frac{1}{2}m(3.5^2) + \frac{1}{2}m(1.75^2 + 1.47^2)

KE_f = 8.73 m

initial kinetic energy of both pucks is given as

KE_i = \frac{1}{2}m(4.5^2) + 0

KE_i = 10.125 m

since KE is decreased here so it must be inelastic collision

D) No, since kinetic energy is not conserved.

5 0
2 years ago
Other questions:
  • Liz puts a 1 kg weight and a 10 kg on identical sleds. She then applies a 10N force to each sled. Describe why the smaller weigh
    14·2 answers
  • A force f = bx 3 acts in the x direction, where the value of b is 3.7 n/m3. how much work is done by this force in moving an obj
    8·1 answer
  • An 80 kg skateboarder moving at 3 m/s pushes off with her back foot to move faster. If her velocity increases to 5 m/s, what is
    14·2 answers
  • A 2.0-m-tall man is 5.0 m from the converging lens of a camera. His image appears on a detector that is 50 mm behind the lens. H
    15·1 answer
  • On a hypothetical scale X The ice point is 40° and steam point is 120°.
    12·1 answer
  • Compare the density, weight, mass, and volume of a pound of gold to a pound of iron on the surface of Earth.
    11·1 answer
  • What's the diameter of a dish antenna that will receive 10−20W of power from Voyager at this time? Assume that the radio transmi
    14·1 answer
  • Noise-canceling headphones are an application of destructive interference. Each side of the headphones uses a microphone to pick
    7·1 answer
  • A 50.0 kg object is moving at 18.2 m/s when a 200 N force
    14·1 answer
  • 1. A diffraction grating with 5.000 x 103 lines/cm is used to examine the sodium
    8·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!