answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
alexira [117]
1 year ago
9

Most workers in nanotechnology are actively monitored for excess static charge buildup. the human body acts like an insulator as

one walks across a carpet, collecting –50 nc per step. what charge buildup will a worker in a manufacturing plant accumulate if she walks 31 steps?
Physics
1 answer:
irga5000 [103]1 year ago
7 0
Sometimes arithmetic problems can be solved much more easily using the dimensional analysis approach. You focus on the units of the given information. Then, you manipulate them applying the laws of algebra where like units cancel, in order to end up with the unit of the unknown.

Given:
-50 nc/step
31 steps
Unknown: charge

Thus,
Charge = -50 nc/step * 31 steps =<em> -1550 nc</em>
You might be interested in
A girl weighing 45kg is standing on the floor, exerting a downward force of 200N on the floor. The force exerted on her by the f
sukhopar [10]

Answer:

c.

Equal to 200 N..........

7 0
1 year ago
How would reversing the wheel’s initial direction of rotation affect the result??
d1i1m1o1n [39]
It would change the sign on the vector quantities and have no change to the scalar quantities
4 0
2 years ago
If the light strikes the first mirror at an angle θ1, what is the reflected angle θ2? express your answer in terms of θ1.
Alexus [3.1K]

Answer:

θ₂ = 90° - θ₁

Explanation:

When the light falls on a mirror it bounces back. This is know as reflection. The incident angle is equal to the angle of reflection.

Here, the light strikes the mirror at an angle = θ₁

To find the angle of reflection we first need to understand angle of incidence. The angle of incidence is the angle made between the incident ray and normal. Normal is an imaginary line drawn perpendicular line on the boundary of the mirror.

Since the light strikes the mirror at angle of θ₁, which is the angle between light ray and the mirror.

Angle of incidence = 90° - θ₁.

Thus, angle of reflection, θ₂ = 90° - θ₁

3 0
2 years ago
A ball was kicked upward at a speed of 64.2 m/s. how fast was the ball going 1.5 seconds later
UNO [17]

Anything that's not supported and doesn't hit anything, and
doesn't have any air resistance, gains 9.8 m/s of downward
speed every second, on account of gravity.  If it happens to
be moving up, then it loses 9.8 m/s of its upward speed every
second, on account of gravity.

                (64.2 m/s)  -  [ (9.8 m/s² ) x (1.5 sec) ] 

            =  (64.2 m/s)  -       [      14.7 m/s      ]

            =             49.5 m/s  .  (upward)

7 0
2 years ago
A golfer hits a golf ball at an angle of 25.0° to the ground. if the golf ball covers a horizontal distance of 301.5 m, what is
kvasek [131]

<u>Answer:</u>

 Maximum height reached = 35.15 meter.

<u>Explanation:</u>

Projectile motion has two types of motion Horizontal and Vertical motion.

Vertical motion:

         We have equation of motion, v = u + at, where v is the final velocity, u is the initial velocity, a is the acceleration and t is the time taken.

         Considering upward vertical motion of projectile.

         In this case, Initial velocity = vertical component of velocity = u sin θ, acceleration = acceleration due to gravity = -g m/s^2 and final velocity = 0 m/s.

        0 = u sin θ - gt

         t = u sin θ/g

    Total time for vertical motion is two times time taken for upward vertical motion of projectile.

    So total travel time of projectile = 2u sin θ/g

Horizontal motion:

  We have equation of motion , s= ut+\frac{1}{2} at^2, s is the displacement, u is the initial velocity, a is the acceleration and t is the time.

  In this case Initial velocity = horizontal component of velocity = u cos θ, acceleration = 0 m/s^2 and time taken = 2u sin θ /g

 So range of projectile,  R=ucos\theta*\frac{2u sin\theta}{g} = \frac{u^2sin2\theta}{g}

 Vertical motion (Maximum height reached, H) :

     We have equation of motion, v^2=u^2+2as, where u is the initial velocity, v is the final velocity, s is the displacement and a is the acceleration.

   Initial velocity = vertical component of velocity = u sin θ, acceleration = -g, final velocity = 0 m/s at maximum height H

   0^2=(usin\theta) ^2-2gH\\ \\ H=\frac{u^2sin^2\theta}{2g}

In the give problem we have R = 301.5 m,  θ = 25° we need to find H.

So  \frac{u^2sin2\theta}{g}=301.5\\ \\ \frac{u^2sin(2*25)}{g}=301.5\\ \\ u^2=393.58g

Now we have H=\frac{u^2sin^2\theta}{2g}=\frac{393.58*g*sin^2 25}{2g}=35.15m

 So maximum height reached = 35.15 meter.

7 0
1 year ago
Other questions:
  • Vector A⃗ has a magnitude of 3.00 and is directed parallel to the negative y-axis and vector B⃗ has a magnitude of 3.00 and is d
    6·2 answers
  • A small object slides along the frictionless loop-the-loop with a diameter of 3 m. what minimum speed must it have at the top of
    11·1 answer
  • A softball is thrown from the origin of an x-y coordinate system with an initial speed of 18 m/s at an angle of 35∘ above the ho
    12·1 answer
  • A transverse wave on a string has an amplitude A. A tiny spot on the string is colored red. As one cycle of the wave passes by,
    7·1 answer
  • Consider a bicycle wheel to be a ring of radius 30 cm and mass 1.5 kg. Neglect the mass of the axle and sprocket. If a force of
    11·1 answer
  • A 128.0-N carton is pulled up a frictionless baggage ramp inclined at 30.0∘above the horizontal by a rope exerting a 72.0-N pull
    5·1 answer
  • While a car is stopped at a traffic light in a storm, raindrops strike the roof of the car. The area of the roof is 5.0 m2. Each
    13·1 answer
  • Astronomers determine that a certain square region in interstellar space has an area of approximately 2.4 \times 10^72.4×10 ​7 ​
    7·1 answer
  • A person ate 0.50 pound of cheese (an energy intake of 4000 kJ). Suppose that none of the energy was stored in his body. What ma
    14·1 answer
  • 2. On January 21 in 1918, Granville, North Dakota, had a surprising change in temperature. Within 12 hours, the temperature chan
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!