<span>First, we use the kinetic energy equation to create a formula:
Ka = 2Kb
1/2(ma*Va^2) = 2(1/2(mb*Vb^2))
The 1/2 of the right gets cancelled by the 2 left of the bracket so:
1/2(ma*Va^2) = mb*Vb^2 (1)
By the definiton of momentum we can say:
ma*Va = mb*Vb
And with some algebra:
Vb = (ma*Va)/mb (2)
Substituting (2) into (1), we have:
1/2(ma*Va^2) = mb*((ma*Va)/mb)^2
Then:
1/2(ma*Va^2) = mb*(ma^2*Va^2)/mb^2
We cancel the Va^2 in both sides and cancel the mb at the numerator, leving the denominator of the right side with exponent 1:
1/2(ma) = (ma^2)/mb
Cancel the ma of the left, leaving the right one with exponent 1:
1/2 = ma/mb
And finally we have that:
mb/2 = ma
mb = 2ma</span>
Complete Question
An aluminum "12 gauge" wire has a diameter d of 0.205 centimeters. The resistivity ρ of aluminum is 2.75×10−8 ohm-meters. The electric field in the wire changes with time as E(t)=0.0004t2−0.0001t+0.0004 newtons per coulomb, where time is measured in seconds.
I = 1.2 A at time 5 secs.
Find the charge Q passing through a cross-section of the conductor between time 0 seconds and time 5 seconds.
Answer:
The charge is 
Explanation:
From the question we are told that
The diameter of the wire is 
The radius of the wire is 
The resistivity of aluminum is 
The electric field change is mathematically defied as

Generally the charge is mathematically represented as

Where A is the area which is mathematically represented as

So

Therefore

substituting values
![Q = 120 \int\limits^{t}_{0} { [ 0.0004t^2 - 0.0001t +0.0004] } \, dt](https://tex.z-dn.net/?f=Q%20%3D%20120%20%5Cint%5Climits%5E%7Bt%7D_%7B0%7D%20%7B%20%5B%200.0004t%5E2%20-%200.0001t%20%2B0.0004%5D%20%7D%20%5C%2C%20dt)
![Q = 120 [ \frac{0.0004t^3 }{3} - \frac{0.0001 t^2}{2} +0.0004t] } \left | t} \atop {0}} \right.](https://tex.z-dn.net/?f=Q%20%3D%20120%20%5B%20%5Cfrac%7B0.0004t%5E3%20%7D%7B3%7D%20-%20%5Cfrac%7B0.0001%20t%5E2%7D%7B2%7D%20%2B0.0004t%5D%20%7D%20%20%5Cleft%20%7C%20t%7D%20%5Catop%20%7B0%7D%7D%20%5Cright.)
From the question we are told that t = 5 sec
![Q = 120 [ \frac{0.0004t^3 }{3} - \frac{0.0001 t^2}{2} +0.0004t] } \left | 5} \atop {0}} \right.](https://tex.z-dn.net/?f=Q%20%3D%20120%20%5B%20%5Cfrac%7B0.0004t%5E3%20%7D%7B3%7D%20-%20%5Cfrac%7B0.0001%20t%5E2%7D%7B2%7D%20%2B0.0004t%5D%20%7D%20%20%5Cleft%20%7C%205%7D%20%5Catop%20%7B0%7D%7D%20%5Cright.)
![Q = 120 [ \frac{0.0004(5)^3 }{3} - \frac{0.0001 (5)^2}{2} +0.0004(5)] }](https://tex.z-dn.net/?f=Q%20%3D%20120%20%5B%20%5Cfrac%7B0.0004%285%29%5E3%20%7D%7B3%7D%20-%20%5Cfrac%7B0.0001%20%285%29%5E2%7D%7B2%7D%20%2B0.0004%285%29%5D%20%7D)

Answer:
I = 215.76 A
Explanation:
The direction of magnetic field produced by conductor 1 on the location of conductor 2 is towards left. Based on Right Hand Rule -1 and taking figure 21.3 as reference, the direction of force Fm due to magnetic field produced at C_2 is shown above. The force Fm balances the weight of conductor 2.
Fm = u_o*I^2*L/2*π*d
where I is the current in each rod, d = 0.0082 m is the distance 27rId
between each, L = 0.85 m is the length of each rod.
Fm = 4π*10^-7*I^2*1.1/2*π*0.0083
The mass of each rod is m = 0.0276 kg
F_m = mg
4π*10^-7*I^2*1.1/2*π*0.0083=0.0276*9.8
I = 215.76 A
note:
mathematical calculation maybe wrong or having little bit error but the method is perfectly fine
Answer:

Explanation:
(a) Free-body diagram attached.
(b) The stone attached with the string experiences both centripetal (towards the center) and centrifugal (away from the center) forces. The tension of the string counters the centrifugal force until it breaks.
We know that,
Centrifugal force = 
where,
= mass of the stone
= velocity of the stone
= length of the string
To find the maximum speed attained by the stone without the string breaking, we must equate:

or, 
Answer:
Explanation:
Question 1:
Mass=1kg
Acceleration due to gravity=9.8m/s^2
Height=10m
on the before falling it has potential energy
Potential energy=mass x acceleration due to gravity x height
Potential energy=1 x 9.8 x 10
Potential energy=98 joules
Question 2:
Potential energy=kinetic energy base base on energy transformation
Kinetic energy=(mass x (velocity)^2)➗2
98=(1 x(velocity))^2 ➗ 2
Cross multiplying
98 x 2=(velocity)^2
196=(velocity)^2
Velocity=√(196)
Velocity=14
Velocity=14m/s