answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Charra [1.4K]
2 years ago
5

A 25.0-kg child plays on a swing having support ropes that are 2.20 m long. Her brother pulls her back until the ropes are 42.0°

from the vertical and releases her from rest. (a) What is her potential energy just as she is released, compared with the potential energy at the bottom of the swing’s motion? (b) How fast will she be moving at the bottom? (c) How much work does the tension in the ropes do as she swings from the initial position to the bottom of the motion?
Physics
1 answer:
SCORPION-xisa [38]2 years ago
7 0

(a) 139.7 J

The potential energy of the child at the initial position, measured relative the her potential energy at the bottom of the motion, is

U=mg\Delta h

where

m = 25.0 kg is the mass of the child

g = 9.8 m/s^2

\Delta h is the difference in height between the initial position and the bottom position

We are told that the rope is L = 2.20 m long and inclined at 42.0° from the vertical: therefore, \Delta h is given by

\Delta h = L - L cos \theta =L(1-cos \theta)=(2.20 m)(1-cos 42.0^{\circ})=0.57 m

So, her potential energy is

U=(25.0 kg)(9.8 m/s^2)(0.57 m)=139.7 J

(b) 3.3 m/s

At the bottom of the motion, all the initial potential energy of the child has been converted into kinetic energy:

U=K=\frac{1}{2}mv^2

where

m = 25.0 kg is the mass of the child

v is the speed of the child at the bottom position

Solving the equation for v, we find

v=\sqrt{\frac{2K}{m}}=\sqrt{\frac{2(139.7 J)}{25.0 kg}}=3.3 m/s

(c) 0

The work done by the tension in the rope is given by:

W=Td cos \theta

where

T is the tension

d is the displacement of the child

\theta is the angle between the directions of T and d

In this situation, we have that the tension in the rope, T, is always perpendicular to the displacement of the child, d. Therefore, \theta=90^{\circ} and cos \theta=0, so the work done is zero.

You might be interested in
A 2400-kg satellite is in a circular orbit around a planet. the satellite travels with a constant speed of 6670 m/s. the radius
Ad libitum [116K]
The gravitational force exerted on the satellite is called the centrifugal force, the force keeping it orbiting to the planet. Its formula is F= mass times the square of the velocity all over the radius.Thus,

F = 2400 * 6670^2 * (1/8.92x10^6) 
F = 11,970 N

I hope I was able to help you. Have a good day.
4 0
2 years ago
Read 2 more answers
When calculating the mechanical advantage of a lever, what two pieces of information are needed?
DIA [1.3K]
From the items on this list, the only one that allows calculation
of the mechanical advantage is 'B' ... the lengths from the fulcrum
to the effort and the resistance.

The MA can also be calculated when you know the two forces ...
the effort and the resistance ... when the lever is just balanced.
4 0
2 years ago
Read 2 more answers
Instructions:Drag the tiles to the correct boxes to complete the pairs. Match each term with its definition. Tiles conductor rad
UNO [17]

<span>High SchoolPhysics5+3 pts</span><span>Instructions:Drag the tiles to the correct boxes to complete the pairs. Match each term with its definition. Tiles conductor radiation insulator convection conduction Pairs heat transfer involving direct contact of particles arrowBoth heat transfer in fluids arrowBoth heat transfer that doesn’t need a medium arrowBoth substance that doesn’t allow heat through arrowBoth substance that allows heat through arrowBoth

These are the answers:

</span>Conductor - <span>substance that allows heat through 
</span>Radiation - <span> heat transfer that doesn’t need a medium
</span>Insulator -  <span>substance that doesn’t allow heat through 
</span>Convection - <span>heat transfer in fluids
Conduction - </span>heat transfer involving direct contact of particles 
4 0
2 years ago
Read 2 more answers
A person kicks a ball, giving it an initial velocity of 20.0 m/s up a wooden ramp. When the ball reaches the top, it becomes air
Alex Ar [27]

Answer:

(a) Height is 4.47 m

(b) Height is 4.37 m

Solution:

As per the question:

Initial velocity of teh ball, v_{o} = 20.0 m/s

Angle made by the ramp, \theta = 22.0^{\circ}

Distance traveled by the ball on the ramp, d = 5.00 m

Now,

(a) At any point on the projectile before attaining maximum height, the velocity can be given by the eqn-3 of motion:

v^{2} = v_{o}^{2} - 2gH

where

H = dsin22^{\circ} = 5sin22^{\circ}

g = 9.8 m/s^{2}

v^{2} = 20^{2} - 2\times 9.8\times 5sin22^{\circ}

v = \sqrt{400 - 19.6\times 5sin22^{\circ}} = 19.06 m/s

Now, maximum height attained is given by:

h = \frac{(vsin\theta)^{2}}{2g}

h = \frac{(19sin(22^{\circ}))^{2}}{2\times 9.8} = 2.60 m

Height from the ground = 5sin22^{circ} + 2.86 = 1.87 + 2.60 = 4.47m

(b) now, considering the coefficient of friction bhetween ramp and the ball, \mu = 0.150:

velocity can be given by the eqn-3 of motion:

v^{2} = v_{o}^{2} - 2gH - \mu gd

v^{2} = 20^{2} - 2\times 9.8\times 5sin22^{\circ} - 0.150\times 9.8\times 5

v = \sqrt{400 - 19.6\times 5sin22^{\circ} - 0.150\times 9.8\times 5} = 18.7 m/s

Now, maximum height attained is given by:

h = \frac{(vsin\theta)^{2}}{2g}

h = \frac{(18.7sin(22^{\circ}))^{2}}{2\times 9.8} = 2.50 m

Height from the ground = 5sin22^{circ} + 2.86 = 1.87 + 2.50 = 4.37 m

6 0
2 years ago
An individual white LED (light-emitting diode) has an efficiency of 20% and uses 1.0 W of electric power. a. How many LEDs must
Neporo4naja [7]

Answer:

8, 8 W

Explanation:

The useful power of 1 Light Emitting Diode is

0.2\times 1=0.2\ W

Total power required is 1.6 W

Number of Light Emitting Diodes would be

n=\dfrac{1.6}{0.2}\\\Rightarrow n=8

The number of Light Emitting Diodes is 8.

Power would be

P=8\times 1=8\ W

The power that is required to run the Light Emitting Diodes is 8 W

7 0
2 years ago
Other questions:
  • A golf ball is hit by a club. The graph shows the variation with time of the force exerted on the bal
    11·2 answers
  • A 23.3-kg mass is attached to one end of a horizontal spring, with the other end of the spring fixed to a wall. the mass is pull
    12·2 answers
  • An athlete leaves one end of a pool of length l at t = 0 and arrives at the other end at time t1. she swims back and arrives at
    10·1 answer
  • Nitrogen (n2) gas within a piston–cylinder assembly undergoes a compression from p1 = 20 bar, v1 = 0.5 m3 to a state where v2 =
    8·2 answers
  • A spring is stretched 6 in by a mass that weighs 8 lb. The mass is attached to a dashpot mechanism that has a damping constant o
    12·1 answer
  • in a hydraulic press the small cylinder has a diameter 10.0cm while the large has 25cm if the force of 600N is applied to the sm
    8·2 answers
  • Young athlete has a mass of 42 kg one day there is no wind shear and hundred metre race in 14.2 second a sketch graph not in ske
    10·2 answers
  • Sara and Saba are identical twins who are the same in every way, including their weights. One day, Sara and Saba decided to go f
    12·1 answer
  • Which of the following statements about stages of nuclear burning (i.e., first-stage hydrogen burning, second-stage helium burni
    6·1 answer
  • Marissa researched the cost to have custom T-shirts printed by several local and online vendors. She found that each store’s cha
    6·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!