Answer with Explanation:
We are given Avogadro's constant =
There are eight significant figures.
We have to round off.
1.If we round off to four significant figures
The ten thousandth place of Avogadro's constant is less than five therefore, digits on left side of ten thousandth place remains same and digits on right side of ten thousandth place and ten thousandth place replace by zero.
Then ,Avogadro's constant can be written as

If we round off to 2 significant figures
Hundredth place of given number is less than 5 therefore, digits on left side of hundredth place remains same and digits on right side of hundredth place and hundredth place replace by zero.
Then,Avogadro's constant can be written as

If we round off six significant figures
6 is greater than 5 therefore, 1 will be added to 3 and digits on right side of 6 and 6 replace by zero and digits on left side of 6 remains same except 3.
Then, the Avogadro's constant can be written as

Answer:
5.5 × 10^14 Hz or s^-1
no orange light has less frequency so no photoelectric effect
Explanation:
hf = hf0 + K.E
HERE h is Planck 's constant having value 6.63 × 10 ^-34 J s
f is frequency of incident photon and f0 is threshold frequency
hf0 = hf- k.E
6.63 × 10 ^-34 × f0 = 6.63 × 10 ^-34× 6.66 × 10^14 - 7.74× 10^-20
6.63 × 10 ^-34 × f0 = 3.64158×10^-19
f0 = 3.64158×10^-19/ 6.63 × 10 ^-34
f0 = 5.4925 × 10^14
f0 =5.5 × 10^14 Hz or s^-1
frequency of orange light is 4.82 × 10^14 Hz which is less than threshold frequency hence photo electric effect will not be observed for orange light
Answer:
zero or 2π is maximum
Explanation:
Sine waves can be written
x₁ = A sin (kx -wt + φ₁)
x₂ = A sin (kx- wt + φ₂)
When the wave travels in the same direction
Xt = x₁ + x₂
Xt = A [sin (kx-wt + φ₁) + sin (kx-wt + φ₂)]
We are going to develop trigonometric functions, let's call
a = kx + wt
Xt = A [sin (a + φ₁) + sin (a + φ₂)
We develop breasts of double angles
sin (a + φ₁) = sin a cos φ₁ + sin φ₁ cos a
sin (a + φ₂) = sin a cos φ₂ + sin φ₂ cos a
Let's make the sum
sin (a + φ₁) + sin (a + φ₂) = sin a (cos φ₁ + cos φ₂) + cos a (sin φ₁ + sinφ₂)
to have a maximum of the sine function, the cosine of fi must be maximum
cos φ₁ + cos φ₂ = 1 +1 = 2
the possible values of each phase are
φ1 = 0, π, 2π
φ2 = 0, π, 2π,
so that the phase difference of being zero or 2π is maximum